Chinese Journal of Antituberculosis ›› 2022, Vol. 44 ›› Issue (10): 983-986.doi: 10.19982/j.issn.1000-6621.20220346
• Editorial • Previous Articles Next Articles
Received:
2022-09-08
Online:
2022-10-10
Published:
2022-09-30
CLC Number:
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20220346
[1] | World Health Organization. Global tuberculosis report 2021. Geneva: World Health Organization, 2021. |
[2] | World Health Organization. Global tuberculosis report 2020. Geneva: World Health Organization, 2020. |
[3] |
Sampath P, Moideen K, Ranganathan UD, et al. Monocyte Subsets: Phenotypes and Function in Tuberculosis Infection. Front Immunol, 2018, 9:1726. doi: 10.3389/fimmu.2018.01726.
doi: 10.3389/fimmu.2018.01726 pmid: 30105020 |
[4] |
Croft M. Co-stimulatory members of the TNFR family:keys to effective T-cell immunity? Nat Rev Immunol, 2003, 3(8):609-620. doi: 10.1038/nri1148.
doi: 10.1038/nri1148 URL |
[5] |
Cooper AM. Cell-mediated immune responses in tuberculosis. Annu Rev Immunol, 2009, 27:393-422. doi: 10.1146/annurev.immunol.021908.132703.
doi: 10.1146/annurev.immunol.021908.132703 |
[6] |
Urdahl KB, Shafiani S, Ernst JD. Initiation and regulation of T-cell responses in tuberculosis. Mucosal Immunol, 2011, 4(3):288-293. doi: 10.1038/mi.2011.10.
doi: 10.1038/mi.2011.10 pmid: 21451503 |
[7] |
Morgan J, Muskat K, Tippalagama R, et al. Classical CD4 T cells as the cornerstone of antimycobacterial immunity. Immunol Rev, 2021, 301(1):10-29. doi: 10.1111/imr.12963.
doi: 10.1111/imr.12963 pmid: 33751597 |
[8] |
An HR, Bai XJ, Liang JQ, et al. The relationship between absolute counts of lymphocyte subsets and clinical features in patients with pulmonary tuberculosis. Clin Respir J, 2022, 16(5):369-379. doi: 10.1111/crj.13490.
doi: 10.1111/crj.13490 URL |
[9] |
Guglielmetti L, Cazzadori A, Conti M, et al. Lymphocyte subpopulations in active tuberculosis: association with disease severity and the QFT-GIT assay. Int J Tuberc Lung Dis, 2013, 17(6):825-828. doi: 10.5588/ijtld.12.0361.
doi: 10.5588/ijtld.12.0361 pmid: 23676170 |
[10] |
Morais-Papini TF, Coelho-Dos-Reis JGA, Wendling APB, et al. Systemic Immunological changes in patients with distinct clinical outcomes during Mycobacterium tuberculosis infection. Immunobiology, 2017, 222(11):1014-1024. doi: 10.1016/j.imbio.2017.05.016.
doi: S0171-2985(17)30099-2 pmid: 28619539 |
[11] |
傅小燕, 吴桂辉, 黄涛, 等. 活动性肺结核合并糖尿病患者的T细胞亚群与血糖水平的相关性研究. 中西医结合心血管病电子杂志, 2018, 6(34):71. doi: 10.16282/j.cnki.cn11-9336/r.2018.34.057.
doi: 10.16282/j.cnki.cn11-9336/r.2018.34.057 |
[12] |
Schurz H, Daya M, Möller M, et al. TLR1, 2, 4, 6 and 9 Variants Associated with Tuberculosis Susceptibility: A Systematic Review and Meta-Analysis. PLoS One, 2015, 10(10):e0139711. doi: 10.1371/journal.pone.0139711.
doi: 10.1371/journal.pone.0139711 |
[13] |
Sadki K, Lamsyah H, Rueda B, et al. Analysis of MIF, FCGR2A and FCGR3A gene polymorphisms with susceptibility to pulmonary tuberculosis in Moroccan population. J Genet Genomics, 2010, 37(4):257-264. doi: 10.1016/s1673-8527(09)60044-8.
doi: 10.1016/S1673-8527(09)60044-8 pmid: 20439102 |
[14] |
Pieters J. Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell Host Microbe, 2008, 3(6):399-407. doi: 10.1016/j.chom.2008.05.006.
doi: 10.1016/j.chom.2008.05.006 pmid: 18541216 |
[15] |
Boisson-Dupuis S. The monogenic basis of human tuberculosis. Hum Genet, 2020, 139(6/7):1001-1009. doi: 10.1007/s00439-020-02126-6.
doi: 10.1007/s00439-020-02126-6 URL |
[16] |
Ogishi M, Yang R, Aytekin C, et al. Inherited PD-1 deficiency underlies tuberculosis and autoimmunity in a child. Nat Med, 2021, 27(9):1646-1654. doi: 10.1038/s41591-021-01388-5.
doi: 10.1038/s41591-021-01388-5 pmid: 34183838 |
[17] |
Pires D, Marques J, Pombo JP, et al. Role of Cathepsins in Mycobacterium tuberculosis Survival in Human Macrophages. Sci Rep, 2016, 6:32247. doi: 10.1038/srep32247.
doi: 10.1038/srep32247 URL |
[18] |
Li F, Feng L, Jin C, et al. LpqT improves mycobacteria survival in macrophages by inhibiting TLR2 mediated inflammatory cytokine expression and cell apoptosis. Tuberculosis (Edinb), 2018, 111:57-66. doi: 10.1016/j.tube.2018.05.007.
doi: 10.1016/j.tube.2018.05.007 URL |
[19] |
Portal-Celhay C, Tufariello JM, Srivastava S, et al. Mycobacterium tuberculosis EsxH inhibits ESCRT-dependent CD4+ T-cell activation. Nat Microbiol, 2016, 2:16232. doi: 10.1038/nmicrobiol.2016.232.
doi: 10.1038/nmicrobiol.2016.232 pmid: 27918526 |
[20] |
Urazova OI, Novitskii VV, Kolobovnikova YV, et al. Factors of Suppression of Immune Response in Patients with Pulmonary Tuberculosis and Eosinophilia. Bull Exp Biol Med, 2015, 159(3):323-326. doi: 10.1007/s10517-015-2952-3.
doi: 10.1007/s10517-015-2952-3 URL |
[21] |
Wang L, Wu J, Li J, et al. Host-mediated ubiquitination of a mycobacterial protein suppresses immunity. Nature, 2020, 577(7792):682-688. doi: 10.1038/s41586-019-1915-7.
doi: 10.1038/s41586-019-1915-7 URL |
[22] |
中国人民解放军总医院第八医学中心全军结核病研究所/全军结核病防治重点实验室/结核病诊疗新技术北京市重点实验室, 《中国防痨杂志》编辑委员会, 中国医疗保健国际交流促进会结核病防治分会基础和临床学部. 活动性结核病患者免疫功能状态评估和免疫治疗专家共识(2021年版).中国防痨杂志, 2022, 44(1): 9-27. doi: 10.19982/j.issn.1000-6621.20210680.
doi: 10.19982/j.issn.1000-6621.20210680 |
[23] |
Khan TA, Mazhar H, Saleha S, et al. Interferon-Gamma Improves Macrophages Function against M.tuberculosis in Multidrug-Resistant Tuberculosis Patients. Chemother Res Pract, 2016, 2016:7295390. doi: 10.1155/2016/7295390.
doi: 10.1155/2016/7295390 |
[24] |
Deretic V, Delgado M, Vergne I, et al. Autophagy in immunity against Mycobacterium tuberculosis: a model system to dissect immunological roles of autophagy. Curr Top Microbiol Immunol, 2009, 335:169-188. doi: 10.1007/978-3-642-00302-8_8.
doi: 10.1007/978-3-642-00302-8_8 pmid: 19802565 |
[25] | 吴雪琼, 吴长有. 结核病免疫学. 北京: 人民卫生出版社, 2016. |
[26] |
刘晓, 吴雪琼. 中药治疗耐多药肺结核的研究进展. 中国防痨杂志, 2016, 38(1): 53-56. doi: 10.3969/j.issn.1000-6621.2016.01.012.
doi: 10.3969/j.issn.1000-6621.2016.01.012 |
[27] |
Roy E, Lowrie DB, Jolles SR. Current strategies in TB immunotherapy. Curr Mol Med, 2007, 7(4):373-386. doi: 10.2174/156652407780831557.
doi: 10.2174/156652407780831557 pmid: 17584077 |
[28] |
Joshi L, Chelluri LK, Gaddam S. Mesenchymal stromal cell therapy in MDR/XDR tuberculosis: A concise review. Arch Immunol Ther Exp(Warsz), 2015, 63(6): 427-433. doi: 10.1007/s00005-015-0347-9.
doi: 10.1007/s00005-015-0347-9 |
[29] |
付亮, 梁娟, 张国良, 等. γδT细胞在结核病免疫治疗的研究及其应用前景. 中国防痨杂志, 2019, 41(6):695-699. doi: 10.3969/j.issn.1000-6621.2019.06.019.
doi: 10.3969/j.issn.1000-6621.2019.06.019 |
[30] |
Byeon S, Cho JH, Jung HA, et al. PD-1 inhibitors for non-small cell lung cancer patients with special issues: Real-world evidence. Cancer Med, 2020, 9(7):2352-2362. doi: 10.1002/cam4.2868.
doi: 10.1002/cam4.2868 URL |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||