Chinese Journal of Antituberculosis ›› 2022, Vol. 44 ›› Issue (1): 38-44.doi: 10.19982/j.issn.1000-6621.20210655
• Expert Note • Previous Articles Next Articles
Chinese Antituberculosis Association , National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention
Received:
2021-11-17
Online:
2022-01-10
Published:
2021-12-29
Supported by:
CLC Number:
Chinese Antituberculosis Association , National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention . Recommendations on pretomanid (PA-824) in the treatment of multidrug-resistant tuberculosis[J]. Chinese Journal of Antituberculosis, 2022, 44(1): 38-44. doi: 10.19982/j.issn.1000-6621.20210655
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20210655
[1] |
Bahuguna A, Rawat DS. An overview of new antitubercular drugs, drug candidates, and their targets. Med Res Rev, 2020, 40(1):263-292. doi: 10.1002/med.21602.
doi: 10.1002/med.21602 pmid: 31254295 |
[2] |
Keam SJ. Pretomanid: First Approval. Drugs, 2019, 79(16):1797-1803. doi: 10.1007/s40265-019-01207-9.
doi: 10.1007/s40265-019-01207-9 URL |
[3] |
Burki T. BPaL approved for multidrug-resistant tuberculosis. Lancet Infect Dis, 2019, 19(10):1063-1064. doi: 10.1016/S1473-3099(19)30489-X.
doi: 10.1016/S1473-3099(19)30489-X URL |
[4] | World Health Organization. WHO consolidated guidelines on tuberculosis, module 4: treatment-drug-resistant tuberculosis treatment. Geneva: World Health Organization, 2020. |
[5] | TB Alliance. Access to the BPaL Regimen[EB/OL]. [2021-11-15]. https://www.tballiance.org/access/countries. |
[6] |
Conradie F, Diacon AH, Ngubane N, et al. Treatment of Highly Drug-Resistant Pulmonary Tuberculosis. N Engl J Med, 2020, 382(10):893-902. doi: 10.1056/NEJMoa1901814.
doi: 10.1056/NEJMoa1901814 URL |
[7] | TB Alliance. PRETOMANID tablets, for oral use[EB/OL]. [2021-11-15]. https://www.tballiance.org/sites/default/files/assets/Pretomanid_Full-Prescribing-Information.pdf. |
[8] |
Manjunatha U, Boshoff HI, Barry CE. The mechanism of action of PA-824: Novel insights from transcriptional profiling. Commun Integr Biol, 2009, 2(3):215-218. doi: 10.4161/cib.2.3.7926.
doi: 10.4161/cib.2.3.7926 pmid: 19641733 |
[9] |
Singh R, Manjunatha U, Boshoff HI, et al. PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science, 2008, 322(5906):1392-1395. doi: 10.1126/science.1164571.
doi: 10.1126/science.1164571 URL |
[10] |
Baptista R, Fazakerley DM, Beckmann M, et al. Untargeted metabolomics reveals a new mode of action of pretomanid (PA-824). Sci Rep, 2018, 8(1):5084. doi: 10.1038/s41598-018-23110-1.
doi: 10.1038/s41598-018-23110-1 pmid: 29572459 |
[11] |
Haver HL, Chua A, Ghode P, et al. Mutations in genes for the F420 biosynthetic pathway and a nitroreductase enzyme are the primary resistance determinants in spontaneous in vitro-selected PA-824-resistant mutants of Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2015, 59(9):5316-5323. doi: 10.1128/AAC.00308-15.
doi: 10.1128/AAC.00308-15 pmid: 26100695 |
[12] |
Lenaerts AJ, Gruppo V, Marietta KS, et al. Preclinical testing of the nitroimidazopyran PA-824 for activity against Mycobacterium tuberculosis in a series of in vitro and in vivo models. Antimicrob Agents Chemother, 2005, 49(6):2294-2301. doi: 10.1128/AAC.49.6.2294-2301.2005.
doi: 10.1128/AAC.49.6.2294-2301.2005 pmid: 15917524 |
[13] |
Zhang F, Li S, Wen S, et al. Comparison of in vitro Susceptibility of Mycobacteria Against PA-824 to Identify Key Residues of Ddn, the Deazoflavin-Dependent Nitroreductase from Mycobacterium tuberculosis. Infect Drug Resist, 2020, 13:815-822. doi: 10.2147/IDR.S240716.
doi: 10.2147/IDR.S240716 URL |
[14] |
Tyagi S, Nuermberger E, Yoshimatsu T, et al. Bactericidal activity of the nitroimidazopyran PA-824 in a murine model of tuberculosis. Antimicrob Agents Chemother, 2005, 49(6):2289-2293. doi: 10.1128/AAC.49.6.2289-2293.2005.
doi: 10.1128/AAC.49.6.2289-2293.2005 URL |
[15] |
Lanoix JP, Betoudji F, Nuermberger E. Novel regimens identified in mice for treatment of latent tuberculosis infection in contacts of patients with multidrug-resistant tuberculosis. Antimicrob Agents Chemother, 2014, 58(4):2316-2321. doi: 10.1128/AAC.02658-13.
doi: 10.1128/AAC.02658-13 URL |
[16] |
Tasneen R, Williams K, Amoabeng O, et al. Contribution of the nitroimidazoles PA-824 and TBA-354 to the activity of novel regimens in murine models of tuberculosis. Antimicrob Agents Chemother, 2015, 59(1):129-135. doi: 10.1128/AAC.03822-14.
doi: 10.1128/AAC.03822-14 pmid: 25331697 |
[17] |
Xu J, Li SY, Almeida DV, et al. Contribution of Pretomanid to Novel Regimens Containing Bedaquiline with either Linezolid or Moxifloxacin and Pyrazinamide in Murine Models of Tuberculosis. Antimicrob Agents Chemother, 2019, 63(5):e00021-19. doi: 10.1128/AAC.00021-19.
doi: 10.1128/AAC.00021-19 |
[18] |
Salinger DH, Subramoney V, Everitt D, et al. Population Pharmacokinetics of the Antituberculosis Agent Pretomanid. Antimicrob Agents Chemother, 2019, 63(10):e00907-19. doi: 10.1128/AAC.00907-19.
doi: 10.1128/AAC.00907-19 |
[19] |
Dooley KE, Luetkemeyer AF, Park JG, et al. Phase Ⅰ safety, pharmacokinetics, and pharmacogenetics study of the antituberculosis drug PA-824 with concomitant lopinavir-ritonavir, efavirenz, or rifampin. Antimicrob Agents Chemother, 2014, 58(9):5245-5252. doi: 10.1128/AAC.03332-14.
doi: 10.1128/AAC.03332-14 pmid: 24957823 |
[20] |
Diacon AH, Dawson R, du Bois J, et al. Phase Ⅱ dose-ranging trial of the early bactericidal activity of PA-824. Antimicrob Agents Chemother, 2012, 56(6):3027-3031. doi: 10.1128/AAC.06125-11.
doi: 10.1128/AAC.06125-11 URL |
[21] |
Dawson R, Diacon AH, Everitt D, et al. Efficiency and safety of the combination of moxifloxacin, pretomanid (PA-824), and pyrazinamide during the first 8 weeks of antituberculosis treatment: a phase 2b, open-label, partly randomised trial in patients with drug-susceptible or drug-resistant pulmonary tuberculosis. Lancet, 2015, 385(9979):1738-1747. doi: 10.1016/S0140-6736(14)62002-X.
doi: 10.1016/S0140-6736(14)62002-X URL |
[22] |
Diacon AH, Dawson R, von Groote-Bidlingmaier F , et al. Bactericidal activity of pyrazinamide and clofazimine alone and in combinations with pretomanid and bedaquiline. Am J Respir Crit Care Med, 2015, 191(8):943-953. doi: 10.1164/rccm.201410-1801OC.
doi: 10.1164/rccm.201410-1801OC URL |
[23] |
Diacon AH, Dawson R, von Groote-Bidlingmaier F, et al. 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: a randomised trial. Lancet, 2012, 380(9846):986-993. doi: 10.1016/S0140-6736(12)61080-0.
doi: 10.1016/S0140-6736(12)61080-0 URL |
[24] |
Tiberi S, du Plessis N, Walzl G, et al. Tuberculosis: progress and advances in development of new drugs, treatment regimens, and host-directed therapies. Lancet Infect Dis, 2018, 18(7):e183-e198. doi: 10.1016/S1473-3099(18)30110-5.
doi: 10.1016/S1473-3099(18)30110-5 |
[25] | TB Alliance. Pretomanid[EB/OL]. [2021-11-15]. https://www.tballiance.org/portfolio/compound/pretomanid. |
[26] | The Conference on Retroviruses and Opportunistic Infections. Final results of the Nix-TB clinical study of BPaL regimen for highly resistant TB[EB/OL]. [2021-11-15]. https://www.croiconference.org/abstract/final-results-of-the-nix-tb-clinical-study-of-bpal-regimen-for-highly-resistant-tb/. |
[27] | Conradie F, Everitt D, Olugbosi M, et al. High rate of successful outcomes treating highly resistant TB in the ZeNix study of pretomanid, bedaquiline and alternative doses and durations of linezolid[EB/OL]. [2021-11-15]. https://theprogramme.ias2021.org/Abstract/Abstract/2405. |
[28] | Médecins Sans Frontières. Drug-resistant TB clinical trial ends enrolment early after positive initial data[EB/OL]. [2021-11-15]. https://www.msf.org/drug-resistant-tuberculosis-trial-ends-enrolment-after-positive-initial-data. |
[29] |
Tweed CD, Wills GH, Crook AM, et al. A partially randomised trial of pretomanid, moxifloxacin and pyrazinamide for pulmonary TB. Int J Tuberc Lung Dis, 2021, 25(4):305-314. doi: 10.5588/ijtld.20.0513.
doi: 10.5588/ijtld.20.0513 pmid: 33762075 |
[30] |
Tweed CD, Dawson R, Burger DA, et al. Bedaquiline, moxifloxacin, pretomanid, and pyrazinamide during the first 8 weeks of treatment of patients with drug-susceptible or drug-resistant pulmonary tuberculosis: a multicentre, open-label, partially randomised, phase 2b trial. Lancet Respir Med, 2019, 7(12):1048-1058. doi: 10.1016/S2213-2600(19)30366-2.
doi: 10.1016/S2213-2600(19)30366-2 URL |
[31] |
Li M, Saviolakis GA, El-Amin W, et al. Phase 1 Study of the Effects of the Tuberculosis Treatment Pretomanid, Alone and in Combination with Moxifloxacin, on the QTc Interval in Healthy Volunteers. Clin Pharmacol Drug Dev, 2021, 10(6):634-646. doi: 10.1002/cpdd.898.
doi: 10.1002/cpdd.898 URL |
[32] | World Health Organization. Global Tuberculosis Report 2021. Geneva: World Health Organization, 2021. |
[33] | 复星医药. 复星医药获TB Alliance药物独家授权[EB/OL]. [2021-11-15]. https://www.fosunpharma.com/news/news-details-2251.html. |
[34] |
初乃惠. 以时不我待的精神探索中国耐药肺结核患者全口服化学治疗方案. 中国防痨杂志, 2021, 43(9):857-858. doi: 10.3969/j.issn.1000-6621.2021.09.001.
doi: 10.3969/j.issn.1000-6621.2021.09.001 |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||