Chinese Journal of Antituberculosis ›› 2021, Vol. 43 ›› Issue (9): 965-969.doi: 10.3969/j.issn.1000-6621.2021.09.018
• Review Articles • Previous Articles Next Articles
QI Xue-ting, LU Yu(), CHEN Xiao-you(
)
Received:
2021-04-15
Online:
2021-09-10
Published:
2021-09-07
Contact:
LU Yu,CHEN Xiao-you
E-mail:luyu4876@hotmail.com;chenxy1998@hotmail.com
QI Xue-ting, LU Yu, CHEN Xiao-you. Pharmacodynamic characteristics and interaction of new antituberculosis drugs[J]. Chinese Journal of Antituberculosis, 2021, 43(9): 965-969. doi: 10.3969/j.issn.1000-6621.2021.09.018
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2021.09.018
[1] |
Harding E. WHO global progress report on tuberculosis elimination. Lancet Respir Med, 2020, 8(1):19. doi: 10.1016/S2213-2600(19)30418-7.
doi: 10.1016/S2213-2600(19)30418-7 URL |
[2] |
邢丽, 田瑞飞, 慕杨娜. 肺结核治疗药物发展现状及合理应用. 临床合理用药杂志, 2020, 13(30):179-181. doi: 10.15887/j.cnki.13-1389/r.2020.30.077.
doi: 10.15887/j.cnki.13-1389/r.2020.30.077 |
[3] |
Caesar LK, Cech NB. Synergy and antagonism in natural product extracts:when 1+1 does not equal 2. Nat Prod Rep, 2019, 36(6):869-888. doi: 10.1039/c9np00011a.
doi: 10.1039/c9np00011a URL |
[4] |
Maltempe FG, Caleffi-Ferracioli KR, do Amaral RCR, et al. Activity of rifampicin and linezolid combination in Mycobacterium tuberculosis. Tuberculosis (Edinb), 2017, 104:24-29. doi: 10.1016/j.tube.2017.02.004.
doi: 10.1016/j.tube.2017.02.004 URL |
[5] |
Foo CS, Lechartier B, Kolly GS, et al. Characterization of DprE1-Mediated Benzothiazinone Resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2016, 60(11):6451-6459. doi: 10.1128/AAC.01523-16.
doi: 10.1128/AAC.01523-16 URL |
[6] |
Zhang G, Sheng L, Hegde P, et al. 8-cyanobenzothiazinone analogs with potent antitubercular activity. Medicinal Chemistry Research, 2021, 30(2):449-458. doi: 10.1007/s00044-020-02676-4.
doi: 10.1007/s00044-020-02676-4 URL |
[7] |
Shi J, Lu J, Wen S, et al. In Vitro Activity of PBTZ169 against Multiple Mycobacterium Species. Antimicrob Agents Chemother, 2018, 62(11):e01314-18. doi: 10.1128/AAC.01314-18.
doi: 10.1128/AAC.01314-18 |
[8] |
Lechartier B, Hartkoorn RC, Cole ST. In vitro combination studies of benzothiazinone lead compound BTZ043 against Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2012, 56(11):5790-5793. doi: 10.1128/AAC.01476-12.
doi: 10.1128/AAC.01476-12 pmid: 22926573 |
[9] |
Makarov V, Manina G, Mikusova K, et al. Benzothiazinones Kill Mycobacterium tuberculosis by Blocking Arabinan Synthesis. Science, 2009, 324(5928):801-804. doi: 10.1126/science.1171583.
doi: 10.1126/science.1171583 pmid: 19299584 |
[10] |
Makarov V, Lechartier B, Zhang M, et al. Towards a new combination therapy for tuberculosis with next generation benzothiazinones. EMBO Mol Med, 2014, 6(3):372-383. doi: 10.1002/emmm.201303575.
doi: 10.1002/emmm.201303575 pmid: 24500695 |
[11] |
Lupien A, Vocat A, Foo CS, et al. Optimized Background Regimen for Treatment of Active Tuberculosis with the Next-Generation Benzothiazinone Macozinone (PBTZ169). Antimicrob Agents Chemother, 2018, 62(11):e00840-18. doi: 10.1128/AAC.00840-18.
doi: 10.1128/AAC.00840-18 |
[12] |
Lechartier B, Cole ST. Mode of Action of Clofazimine and Combination Therapy with Benzothiazinones against Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2015, 59(8):4457-4463. doi: 10.1128/AAC.00395-15.
doi: 10.1128/AAC.00395-15 pmid: 25987624 |
[13] |
Zhang Q, Liu Y, Tang S, et al. Clinical benefit of delamanid (OPC-67683) in the treatment of multidrug-resistant tuberculosis patients in China. Cell Biochem Biophys, 2013, 67(3):957-963. doi: 10.1007/s12013-013-9589-5.
doi: 10.1007/s12013-013-9589-5 pmid: 23546935 |
[14] |
Chandramohan Y, Padmanaban V, Bethunaickan R, et al. In vitro interaction profiles of the new antitubercular drugs bedaquiline and delamanid with moxifloxacin against clinical Mycobacterium tuberculosis isolates. J Glob Antimicrob Resist, 2019, 19:348-353. doi: 10.1016/j.jgar.2019.06.013.
doi: S2213-7165(19)30157-2 pmid: 31226332 |
[15] |
Matsumoto M, Hashizume H, Tomishige T, et al. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med, 2006, 3(11):e466. doi: 10.1371/journal.pmed.0030466.
doi: 10.1371/journal.pmed.0030466 URL |
[16] |
Lee M, Mok J, Kim DK, et al. Delamanid, linezolid, levofloxacin, and pyrazinamide for the treatment of patients with fluoroquinolone-sensitive multidrug-resistant tuberculosis (Treatment Shortening of MDR-TB Using Existing and New Drugs, MDR-END): study protocol for a phase II/III, multicenter, randomized, open-label clinical trial. Trials, 2019, 20(1):57. doi: 10.1186/s13063-018-3053-1.
doi: 10.1186/s13063-018-3053-1 URL |
[17] |
Stephanie F, Saragih M, Tambunan USF. Recent Progress and Challenges for Drug-Resistant Tuberculosis Treatment. Pharmaceutics, 2021, 13(5):592. doi: 10.3390/pharmaceutics13050592.
doi: 10.3390/pharmaceutics13050592 URL |
[18] |
Wen S, Jing W, Zhang T, et al. Comparison of in vitro activity of the nitroimidazoles delamanid and pretomanid against multidrug-resistant and extensively drug-resistant tuberculosis. Eur J Clin Microbiol Infect Dis, 2019, 38(7):1293-1296. doi: 10.1007/s10096-019-03551-w.
doi: 10.1007/s10096-019-03551-w URL |
[19] |
Tasneen R, Li SY, Peloquin CA, et al. Sterilizing activity of novel TMC207- and PA-824-containing regimens in a murine model of tuberculosis. Antimicrob Agents Chemother, 2011, 55(12):5485-5492. doi: 10.1128/AAC.05293-11.
doi: 10.1128/AAC.05293-11 pmid: 21930883 |
[20] |
Xu J, Li SY, Almeida DV, et al. Contribution of Pretomanid to Novel Regimens Containing Bedaquiline with either Linezolid or Moxifloxacin and Pyrazinamide in Murine Models of Tuberculosis. Antimicrob Agents Chemother, 2019, 63(5):e00021-19. doi: 10.1128/AAC.00021-19.
doi: 10.1128/AAC.00021-19 |
[21] |
Burki T. BPaL approved for multidrug-resistant tuberculosis. Lancet Infect Dis, 2019, 19(10):1063-1064. doi: 10.1016/S1473-3099(19)30489-X.
doi: 10.1016/S1473-3099(19)30489-X URL |
[22] |
Reddy VM, Dubuisson T, Einck L, et al. SQ109 and PNU-100480 interact to kill Mycobacterium tuberculosis in vitro. J Antimicrob Chemother, 2012, 67(5):1163-1166. doi: 10.1093/jac/dkr589.
doi: 10.1093/jac/dkr589 URL |
[23] |
Chen P, Gearhart J, Protopopova M, et al. Synergistic interactions of SQ109, a new ethylene diamine, with front-line antitubercular drugs in vitro. J Antimicrob Chemother, 2006, 58(2):332-337. doi: 10.1093/jac/dkl227.
doi: 10.1093/jac/dkl227 URL |
[24] |
Lounis N, Vranckx L, Gevers T, et al. In vitro culture conditions affecting minimal inhibitory concentration of bedaquiline against M.tuberculosis. Med Mal Infect, 2016, 46(4):220-225. doi: 10.1016/j.medmal.2016.04.007.
doi: 10.1016/j.medmal.2016.04.007 URL |
[25] |
Wallis RS, Jakubiec W, Mitton-Fry M, et al. Rapid evaluation in whole blood culture of regimens for XDR-TB containing PNU-100480 (sutezolid), TMC207, PA-824, SQ109, and pyrazinamide. PLoS One, 2012, 7(1):e30479. doi: 10.1371/journal.pone.0030479.
doi: 10.1371/journal.pone.0030479 URL |
[26] |
Lounis N, Guillemont J, Veziris N, et al. R207910 (TMC207): un nouvel antibiotique pour le traitement de la tuberculose [R207910 (TMC207): a new antibiotic for the treatment of tuberculosis]. Med Mal Infect, 2010, 40(7):383-390. doi: 10.1016/j.medmal.2009.09.007.
doi: 10.1016/j.medmal.2009.09.007 URL |
[27] |
首都医科大学附属北京胸科医院, 中国防痨协会临床试验专业分会, 中国防痨杂志编辑委员会. 氯法齐明治疗结核病的临床应用指南. 中国防痨杂志, 2020, 42(5):409-417. doi: 10.3969/j.issn.1000-6621.2020.05.001.
doi: 10.3969/j.issn.1000-6621.2020.05.001 |
[28] |
Yu W, Chiwala G, Gao Y, et al. TB47 and clofazimine form a highly synergistic sterilizing block in a second-line regimen for tuberculosis in mice. Biomed Pharmacother, 2020, 131:110782. doi: 10.1016/j.biopha.2020.110782.
doi: 10.1016/j.biopha.2020.110782 URL |
[29] |
Lee BY, Clemens DL, Silva A, et al. Ultra-rapid near universal TB drug regimen identified via parabolic response surface platform cures mice of both conventional and high susceptibility. PLoS One, 2018, 13(11):e0207469. doi: 10.1371/journal.pone.0207469.
doi: 10.1371/journal.pone.0207469 URL |
[30] |
Tyagi S, Ammerman NC, Li SY, et al. Clofazimine shortens the duration of the first-line treatment regimen for experimental chemotherapy of tuberculosis. Proc Natl Acad Sci U S A, 2015, 112(3):869-874. doi: 10.1073/pnas.1416951112.
doi: 10.1073/pnas.1416951112 URL |
[31] |
张叶, 陆宇. 亚胺吩嗪类药物抗结核作用研究进展. 中华结核和呼吸杂志, 2019, 42(2):118-121. doi: 10.3760/cma.j.issn.1001-0939.2019.02.008.
doi: 10.3760/cma.j.issn.1001-0939.2019.02.008 |
[32] |
Zhang D, Liu Y, Zhang C, et al. Synthesis and biological evaluation of novel 2-methoxypyridylamino-substituted riminophenazine derivatives as antituberculosis agents. Molecules, 2014, 19(4):4380-4394. doi: 10.3390/molecules19044380.
doi: 10.3390/molecules19044380 URL |
[33] |
Zhang Y, Zhu H, Fu L, et al. Identifying Regimens Containing TBI-166, a New Drug Candidate against Mycobacterium tuberculosis In Vitro and In Vivo. Antimicrob Agents Chemother, 2019, 63(7):e02496-18. doi: 10.1128/AAC.02496-18.
doi: 10.1128/AAC.02496-18 |
[34] |
Wang A, Wang H, Geng Y, et al. Design, synthesis and antimycobacterial activity of less lipophilic Q203 derivatives containing alkaline fused ring moieties. Bioorg Med Chem, 2019, 27(5):813-821. doi: 10.1016/j.bmc.2019.01.022.
doi: 10.1016/j.bmc.2019.01.022 URL |
[35] |
Pethe K, Bifani P, Jang J, et al. Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nat Med, 2013, 19(9):1157-1160. doi: 10.1038/nm.3262.
doi: 10.1038/nm.3262 URL |
[36] |
Lee BS, Hards K, Engelhart CA, et al. Dual inhibition of the terminal oxidases eradicates antibiotic-tolerant Mycobacterium tuberculosis. EMBO Mol Med, 2021, 13(1):e13207. doi: 10.15252/emmm.202013207.
doi: 10.15252/emmm.202013207 |
[37] |
Yang C, Lei H, Wang D, et al. In vitro activity of linezolid against clinical isolates of Mycobacterium tuberculosis, including multidrug-resistant and extensively drug-resistant strains from Beijing, China. Jpn J Infect Dis, 2012, 65(3):240-242. doi: 10.7883/yoken.65.240.
doi: 10.7883/yoken.65.240 URL |
[38] |
Zhao W, Zheng M, Wang B, et al. Interactions of linezolid and second-line anti-tuberculosis agents against multidrug-resistant Mycobacterium tuberculosis in vitro and in vivo. Int J Infect Dis, 2016, 52:23-28. doi: 10.1016/j.ijid.2016.08.027.
doi: 10.1016/j.ijid.2016.08.027 URL |
[39] |
Pieterman ED, Keutzer L, van der Meijden A, et al. Superior efficacy of a bedaquiline, delamanid and linezolid combination regimen in a mouse-TB model. J Infect Dis, 2021: jiab043. doi: 10.1093/infdis/jiab043.
doi: 10.1093/infdis/jiab043 |
[40] |
Yip PC, Kam KM, Lam ET, et al. In vitro activities of PNU-100480 and linezolid against drug-susceptible and drug-resistant Mycobacterium tuberculosis isolates. Int J Antimicrob Agents, 2013, 42(1):96-97. doi: 10.1016/j.ijantimicag.2013.03.002.
doi: 10.1016/j.ijantimicag.2013.03.002 URL |
[41] |
Williams KN, Brickner SJ, Stover CK, et al. Addition of PNU-100480 to first-line drugs shortens the time needed to cure murine tuberculosis. Am J Respir Crit Care Med, 2009, 180(4):371-376. doi: 10.1164/rccm.200904-0611OC.
doi: 10.1164/rccm.200904-0611OC URL |
[42] |
Butler MS, Paterson DL. Antibiotics in the clinical pipeline in October 2019. J Antibiot (Tokyo), 2020, 73(6):329-364. doi: 10.1038/s41429-020-0291-8.
doi: 10.1038/s41429-020-0291-8 URL |
[43] |
Tiberi S, du Plessis N, Walzl G, et al. Tuberculosis: progress and advances in development of new drugs, treatment regimens, and host-directed therapies. Lancet Infect Dis, 2018, 18(7):e183-e198. doi: 10.1016/S1473-3099(18)30110-5.
doi: 10.1016/S1473-3099(18)30110-5 |
[44] |
Jahan S, Davis H, Ashcraft DS, et al. Evaluation of the in vitro interaction of fosfomycin and meropenem against metallo-β-lactamase-producing Pseudomonas aeruginosa using Etest and time-kill assay. J Investig Med, 2021, 69(2):371-376. doi: 10.1136/jim-2020-001573.
doi: 10.1136/jim-2020-001573 URL |
[45] |
Dooley KE, Phillips PP, Nahid P, et al. Challenges in the clinical assessment of novel tuberculosis drugs. Adv Drug Deliv Rev, 2016, 102:116-122. doi: 10.1016/j.addr.2016.01.014.
doi: 10.1016/j.addr.2016.01.014 URL |
[46] |
Wallis RS, Ginindza S, Beattie T, et al. Adjunctive host-directed therapies for pulmonary tuberculosis: a prospective, open-label, phase 2, randomised controlled trial. Lancet Respir Med,2021,S2213-2600(20)30448-3. doi: 10.1016/S2213-2600(20)30448-3.
doi: 10.1016/S2213-2600(20)30448-3 |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[4] | Zhang Peize, Gao Qian, Deng Guofang. [18F]FDT-PET-CT technology that may bring revolutionary changes to tuberculosis clinical research [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 262-265. |
[5] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[6] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[7] | You Chengdong, Zhu Ling, Li Peibo. Research progress on serum trace elements in the development and nutritional support of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 218-223. |
[8] | Fu Ying, Xiong Yangyang, Fang Si, Li Chuanxiang, Guo Hongrong. The research progress on the relationship between serum albumin and its derivative biomarkers and chronic obstructive pulmonary disease [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 231-236. |
[9] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[10] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[11] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[12] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
[13] | Palidanguli Abudureheman, Wang Senlu, Gulina Badeerhan, Wang Le, Zulikatiayi Abudula, Wang Xinqi, Maiwulajiang Yimamu, Wang Xijiang. Distribution of Mycobacterium tuberculosis genotypes in Kashgar region and their association with clinical characteristics of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1077-1082. |
[14] | Li Wenhan, Yang Jing, Li Chunhua. Research progress of artificial intelligence in pulmonary tuberculosis imaging diagnosis and drug resistance prediction [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1098-1103. |
[15] | Xu Chunhua, Zhu Shiyu, Hu Yi, Yi Kehua, Song Canlei, Wang Zichun, Wu Yong, Wang Qing, Yang Qianru, Shen Xin. Analysis of screening effect of recombinant Mycobacterium tuberculosis fusion protein in screening Mycobacterium tuberculosis infection in close contacts of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 897-902. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||