Chinese Journal of Antituberculosis ›› 2021, Vol. 43 ›› Issue (9): 867-873.doi: 10.3969/j.issn.1000-6621.2021.09.003
Special Issue: 标准、共识、指南
• Guideline·Standard·Consensus • Previous Articles Next Articles
Beijing Chest Hospital, Capital Medical University, Editorial Board of Chinese Journal of Antituberculosis
Received:
2021-07-25
Online:
2021-09-10
Published:
2021-09-07
Beijing Chest Hospital, Capital Medical University, Editorial Board of Chinese Journal of Antituberculosis. Expert consensus on the therapeutic drug monitoring of anti-tuberculosis drugs[J]. Chinese Journal of Antituberculosis, 2021, 43(9): 867-873. doi: 10.3969/j.issn.1000-6621.2021.09.003
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2021.09.003
药品 | 剂量 | 峰浓度(Cmax,mg/L) | 达峰时间(Tmax,h) | 半衰期(T1/2) |
---|---|---|---|---|
异烟肼 | 300mg/次,1次/d 900mg/次,2次/周 | 3~6 9~15 | 0.75~2.0 0.75~2.0 | 0.75~1.8h(快代谢型), 2.0~4.5h(慢代谢型) 0.75~1.8h(快代谢型), 2.0~4.5h(慢代谢型) |
利福平 | 600mg/次,1次/d | 8~24 | 1.5~2.0 | 2~5h |
利福布汀 | 300mg/次,1次/d | 0.45~0.9 | 3~4 | 25~36h |
利福喷丁 | 600mg/次,1次/da | 8~30 | 5~6 | 14~18h |
乙胺丁醇 | 25mg·kg-1·d-1 50mg/kg,2次/周 | 2~6 4~12 | 2~4 2~4 | 双相消除2~4h,12~14h 双相消除2~4h,12~14h |
吡嗪酰胺 | 25~35mg·kg-1·d-1 50mg/kg,2次/周 | 20~60 60~90 | 1~2 1~2 | 10~24h 10~24h |
左氧氟沙星 | 500~1000mg/d | 8~13 | 1~2 | 9h |
莫西沙星 | 400mg/d | 2.5~5 | 1~2 | 7h |
环丙沙星 | 750mg/d | 4.3 | 1~2 | 4h |
加替沙星 | 400mg/d | 2.33~3.59 | 1~2 | 7~14h |
利奈唑胺 | 600mg/次,1次/d 300mg/次,2次/d | 12~26 12~26 | 1.5 1.5 | 5~6h 5~6h |
贝达喹啉 | 400mg/次,1次/d(前2周); 200mg/次,3次/周(2周后) | 2.8~3.3(2周); 1.7(8周);1.3(24周) | 4~6 | 5.5个月 |
环丝氨酸 | 250~500mg/d | 20~35 | 2 | 15.79~25.1h |
氯法齐明 | 100mg/次,1次/d | 0.5~2 | 2~7 | 双相消除 |
德拉马尼 | 100mg/次,2次/d | 1.35(开始),4.14(稳态) | 4 | 30~38h |
普托马尼 | 200mg/次,1次/d | 1.4~2.6(开始), 2.3~4.3(稳态) | 5 | 16h |
乙硫异烟胺 | 250~500mg/d | 2~5 | 1~3 | 2~3h |
丙硫异烟胺 | 250~500mg/d | 1~5 | 3 | - |
链霉素/卡那霉素/阿米卡星 | 15mg·kg-1·d-1 50mg/kg,2次/周 | 35~45 65~80 | 0.5~1.5肌内注射 0.5~1.5肌内注射 | 2~3h 2~3h |
对氨基水杨酸 | 4000mg/d | 41~68(游离酸), 76~104(钠盐) | 3~4(游离酸), 0.5~1(钠盐) | 2~3h |
药品 | 剂量 | 有效性PK/PD参数 | AUC(mg·h/L)a | 有限采样策略(h) |
---|---|---|---|---|
异烟肼 | 5mg·kg-1·d-1 | AUC/MIC>567(肺) | 52 | 1,2.5,6;1,6,8 |
利福平 | 10mg·kg-1·d-1 | AUC/MIC>271 AUC/MIC=435~683 | 38.7 13 | 1,3,8 2,4 |
乙胺丁醇 | 25mg·kg-1·d-1 | AUC/MIC>119 | - | 0,2.5,6;2,4,8 |
吡嗪酰胺 | 25~35mg·kg-1·d-1 | AUC/MIC>8.42 | 363 | 0,2,6;0,5,8 |
左氧氟沙星 | 750~1000mg/d | AUC/MIC>119; AUC/MIC>320(耐药) | 110(85~200)b | 0,5 |
莫西沙星 | 400mg/d | 游离药物AUC/MIC>42; 游离药物AUC/MIC>53(耐药) | 35(10~80)b | 0,1.5,6;0,6 |
利奈唑胺 | 600mg/d | 游离药物AUC/MIC=119 | 107.5±30.16c | 0,2 |
贝达喹啉 | 400mg/次,1次/d(前2周); 200mg,3次/周 | AUC0~168h/MIC或C均值/MIC | AUC0~168h:187(53~689)d | - |
环丝氨酸 | 250~750mg/d | T>MIC30% | - | 4 |
阿米卡星 | 15~20mg·kg-1·d-1 6.5mg·kg-1·d-1 | Cmax/MIC>75;AUC/MIC>103 Cmax/MIC>20 | 568 113(49~232)d | 1,4 1,4 |
对氨基水杨酸 | 4000mg/d | 游离药物Cmin>1mg/L | - | - |
链霉素 | 12~18mg·kg-1·d-1 | - | 197±26c | 1,6 |
乙硫异烟胺 | 250~500mg/d | AUC/MIC>56.2;游离药物 AUC/MIC=42 | - | - |
[1] | World Health Organization. Global tuberculosis report 2020. Geneva: World Health Organization, 2020. |
[2] |
中国药理学会治疗药物监测研究专业委员会. 治疗药物监测工作规范专家共识(2019版). 中国医院用药评价与分析, 2019, 19(8):897-898, 902. doi: 10.14009/j.issn.1672-2124.2019.08.001.
doi: 10.14009/j.issn.1672-2124.2019.08.001 |
[3] |
Park JS, Lee JY, Lee YJ, et al. Serum Levels of Antituberculosis Drugs and Their Effect on Tuberculosis Treatment Outcome. Antimicrob Agents Chemother, 2015, 60(1):92-98. doi: 10.1128/AAC.00693-15.
doi: 10.1128/AAC.00693-15 URL |
[4] |
Stott KE, Pertinez H, Sturkenboom MGG, et al. Pharmacokinetics of rifampicin in adult TB patients and healthy volunteers: a systematic review and meta-analysis. J Antimicrob Chemother, 2018, 73(9):2305-2313. doi: 10.1093/jac/dky152.
doi: 10.1093/jac/dky152 pmid: 29701775 |
[5] |
郭少晨, 朱慧, 郭超, 等. 909例结核病患者一线抗结核药物血药浓度监测结果分析. 中国防痨杂志, 2018, 40(7):744-749. doi: 10.3969/j.issn.1000-6621.2018.07.014.
doi: 10.3969/j.issn.1000-6621.2018.07.014 |
[6] |
Zhu H, Guo SC, Liu ZQ, et al. Therapeutic drug monitoring of cycloserine and linezolid during anti-tuberculosis treatment in Beijing, China. Int J Tuberc Lung Dis, 2018, 22(8):931-936. doi: 10.5588/ijtld.17.0648.
doi: 10.5588/ijtld.17.0648 pmid: 29991404 |
[7] |
Li J, Burzynski JN, Lee YA, et al. Use of therapeutic drug monitoring for multidrug-resistant tuberculosis patients. Chest, 2004, 126(6):1770-1776. doi: 10.1378/chest.126.6.1770.
doi: 10.1378/chest.126.6.1770 URL |
[8] |
Hung WY, Yu MC, Chiang YC, et al. Serum concentrations of cycloserine and outcome of multidrug-resistant tuberculosis in Northern Taiwan. Int J Tuberc Lung Dis, 2014, 18(5):601-606. doi: 10.5588/ijtld.13.0268.
doi: 10.5588/ijtld.13.0268 pmid: 24903799 |
[9] |
Falzon D, Jaramillo E, Gilpin C, et al. Therapeutic drug monitoring to prevent acquired drug resistance of fluoroquinolones in the treatment of tuberculosis. Eur Respir J, 2017, 49(4):1700317. doi: 10.1183/13993003.00317-2017.
doi: 10.1183/13993003.00317-2017 URL |
[10] |
Nahid P, Mase SR, Migliori GB, et al. Treatment of Drug-Resistant Tuberculosis. An Official ATS/CDC/ERS/IDSA Clinical Practice Guideline. Am J RespirCrit Care Med, 2019, 200(10):e93-e142. doi: 10.1164/rccm.201909-1874ST.
doi: 10.1164/rccm.201909-1874ST URL |
[11] |
Wilby KJ, Ensom MH, Marra F. Review of evidence for measuring drug concentrations of first-line antitubercular agents in adults. Clin Pharmacokinet, 2014, 53(10):873-890. doi: 10.1007/s40262-014-0170-1.
doi: 10.1007/s40262-014-0170-1 pmid: 25172553 |
[12] |
Sotgiu G, Alffenaar JW, Centis R, et al. Therapeutic drug monitoring: how to improve drug dosage and patient safety in tuberculosis treatment. Int J Infect Dis, 2015, 32:101-104. doi: 10.1016/j.ijid.2014.12.001.
doi: 10.1016/j.ijid.2014.12.001 URL |
[13] | World Health Organization. WHO conso1idated guidelines on drug-resistant tuberculosis treatment. Geneva: World Health Organization, 2019. |
[14] |
Kim HY, Ulbricht E, Ahn YK, et al. Therapeutic drug monitoring practice in patients with active tuberculosis: assessment of opportunities. Eur Respir J, 2021, 57(1):2002349. doi: 10.1183/13993003.02349-2020.
doi: 10.1183/13993003.02349-2020 URL |
[15] |
van Altena R, Dijkstra JA, van der Meer ME, et al. Reduced Chance of Hearing Loss Associated with Therapeutic Drug Monitoring of Aminoglycosides in the Treatment of Multidrug-Resistant Tuberculosis. Antimicrob Agents Chemother, 2017, 61(3):e01400-16. doi: 10.1128/AAC.01400-16.
doi: 10.1128/AAC.01400-16 |
[16] |
Vu DH, Alffenaar JW, Edelbroek PM, et al. Dried blood spots: a new tool for tuberculosis treatment optimization. Curr Pharm Des, 2011, 17(27):2931-2939. doi: 10.2174/138161211797470174.
doi: 10.2174/138161211797470174 URL |
[17] |
Vu DH, Koster RA, Alffenaar JW, et al. Determination of moxifloxacin in dried blood spots using LC-MS/MS and the impact of the hematocrit and blood volume. J Chromatogr B Analyt Technol Biomed Life Sci, 2011, 879(15/16):1063-1070. doi: 10.1016/j.jchromb.2011.03.017.
doi: 10.1016/j.jchromb.2011.03.017 URL |
[18] |
Vu DH, Bolhuis MS, Koster RA, et al. Dried blood spot analysis for therapeutic drug monitoring of linezolid in patients with multidrug-resistant tuberculosis. Antimicrob Agents Chemother, 2012, 56(11):5758-5763. doi: 10.1128/AAC.01054-12.
doi: 10.1128/AAC.01054-12 pmid: 22926568 |
[19] | 中华人民共和国国家药典委员会. 中华人民共和国药典(2015年版): 四部(通则0521). 北京:中国医药科技出版社, 2015: 59. |
[20] |
Choi R, Jeong BH, Koh WJ, et al. Recommendations for Optimizing Tuberculosis Treatment: Therapeutic Drug Monitoring, Pharmacogenetics, and Nutritional Status Considerations. Ann Lab Med, 2017, 37(2):97-107. doi: 10.3343/alm.2017.37.2.97.
doi: 10.3343/alm.2017.37.2.97 URL |
[21] |
Alsultan A, Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis: an update. Drugs, 2014, 74(8):839-854. doi: 10.1007/s40265-014-0222-8.
doi: 10.1007/s40265-014-0222-8 URL |
[22] |
赵嫄, 雷倩, 党丽云, 等. 抗结核药物血药浓度监测工作的思考和展望. 中国防痨杂志, 2017, 39(11):1228-1232. doi: 10.3969/j.issn.1000-6621.2017.11.015.
doi: 10.3969/j.issn.1000-6621.2017.11.015 |
[23] |
Maze MJ, Paynter J, Chiu W, et al. Therapeutic drug monitoring of isoniazid and rifampicin during anti-tuberculosis treatment in Auckland, New Zealand. Int J Tuberc Lung Dis, 2016, 20(7):955-960. doi: 10.5588/ijtld.15.0792.
doi: 10.5588/ijtld.15.0792 pmid: 27287650 |
[24] |
Medellín-Garibay SE, Correa-López T, Romero-Méndez C, et al. Limited sampling strategies to predict the area under the concentration-time curve for rifampicin. Ther Drug Monit, 2014, 36(6):746-751. doi: 10.1097/FTD.0000000000000093.
doi: 10.1097/FTD.0000000000000093 pmid: 24784025 |
[25] |
Magis-Escurra C, Later-Nijland HM, Alffenaar JW, et al. Population pharmacokinetics and limited sampling strategy for first-line tuberculosis drugs and moxifloxacin. Int J Antimicrob Agents, 2014, 44(3):229-234. doi: 10.1016/j.ijantimicag.2014.04.019.
doi: 10.1016/j.ijantimicag.2014.04.019 URL |
[26] |
Alsultan A, An G, Peloquin CA. Limited sampling strategy and target attainment analysis for levofloxacin in patients with tuberculosis. Antimicrob Agents Chemother, 2015, 59(7):3800-3807. doi: 10.1128/AAC.00341-15.
doi: 10.1128/AAC.00341-15 URL |
[27] |
Sturkenboom MG, Mulder LW, de Jager A, et al. Pharmacokinetic Modeling and Optimal Sampling Strategies for Therapeutic Drug Monitoring of Rifampin in Patients with Tuberculosis. Antimicrob Agents Chemother, 2015, 59(8):4907-4913. doi: 10.1128/AAC.00756-15.
doi: 10.1128/AAC.00756-15 pmid: 26055359 |
[28] |
Kamp J, Bolhuis MS, Tiberi S, et al. Simple strategy to assess linezolid exposure in patients with multi-drug-resistant and extensively-drug-resistant tuberculosis. Int J Antimicrob Agents, 2017, 49(6):688-694. doi: 10.1016/j.ijantimicag.2017.01.017.
doi: 10.1016/j.ijantimicag.2017.01.017 URL |
[29] |
van den Elsen SHJ, Sturkenboom MGG, Akkerman OW, et al. Limited Sampling Strategies Using Linear Regression and the Bayesian Approach for Therapeutic Drug Monitoring of Moxifloxacin in Tuberculosis Patients. Antimicrob Agents Chemother, 2019, 63(7):e00384-19. doi: 10.1128/AAC.00384-19.
doi: 10.1128/AAC.00384-19 |
[30] |
van den Elsen SHJ, Sturkenboom MGG, Van’tBoveneind-Vrubleuskaya N, et al. Population Pharmacokinetic Model and Limited Sampling Strategies for Personalized Dosing of Levofloxacin in Tuberculosis Patients. Antimicrob Agents Chemother, 2018, 62(12):e01092-18. doi: 10.1128/AAC.01092-18.
doi: 10.1128/AAC.01092-18 |
[31] | 朱慧, 李芃, 陆宇. LC-MS/MS方法同时检测人血浆中异烟肼、乙胺丁醇和吡嗪酰胺的浓度. 药物分析杂志, 2012, 32(6):945-949. |
[32] |
Alffenaar JW, Bolhuis M, van Hateren K, et al. Determination of bedaquiline in human serum using liquid chromatography-tandem mass spectrometry. Antimicrob Agents Chemother, 2015, 59(9):5675-5680. doi: 10.1128/AAC.00276-15.
doi: 10.1128/AAC.00276-15 URL |
[33] |
Meng M, Smith B, Johnston B, et al. Simultaneous quantitation of delamanid (OPC-67683) and its eight metabolites in human plasma using UHPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci, 2015, 1002:78-91. doi: 10.1016/j.jchromb.2015.07.058.
doi: 10.1016/j.jchromb.2015.07.058 pmid: 26319300 |
[34] |
Momin MAM, Thien SJ, Krittaphol W, et al. Simultaneous HPLC assay for pretomanid (PA-824), moxifloxacin and pyrazinamide in an inhaler formulation for drug-resistant tuberculosis. J Pharm Biomed Anal, 2017, 135:133-139. doi: 10.1016/j.jpba.2016.11.046.
doi: 10.1016/j.jpba.2016.11.046 URL |
[35] |
王恺隽, 潘媛媛, 邵立军, 等. 基于质谱技术的分析方法验证相关指导原则探讨. 中华检验医学杂志, 2020, 43(12):1166-1171. doi: 10.3760/cma.j.cn114452-20200717-00616.
doi: 10.3760/cma.j.cn114452-20200717-00616 |
[36] | US Food and Administration. Bioanalytical Method Validation Guidance for Industry [EB/OL].[2020-07-15]. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioanalytical-method-validation-guidance-industry. |
[37] | International Conference on Harmonisation. Internationalcouncil for harmonisation of technical requirements for pharmaceuticals for human use.M10: bioanalytical method validation[S/OL]. [2020-07-15]. https://database.ich.org/sites/default/files/M10_EWG_Draft_Guideline.pdf. |
[38] |
陆宇. 治疗药物监测与药物基因组学在优化抗结核治疗中的作用. 临床药物治疗杂志, 2018, 16(4):23-28. doi: 10.3969/j.issn.1672-3384.2018.04.006.
doi: 10.3969/j.issn.1672-3384.2018.04.006 |
[39] |
Märtson AG, Burch G, Ghimire S, et al. Therapeutic drug monitoring in patients with tuberculosis and concurrent medical problems. Expert Opin Drug Metab Toxicol, 2021, 17(1):23-39. doi: 10.1080/17425255.2021.1836158.
doi: 10.1080/17425255.2021.1836158 URL |
[40] |
Burhan E, Ruesen C, Ruslami R, et al. Isoniazid, rifampin, and pyrazinamide plasma concentrations in relation to treatment response in Indonesian pulmonary tuberculosis patients. Antimicrob Agents Chemother, 2013, 57(8):3614-3619. doi: 10.1128/AAC.02468-12.
doi: 10.1128/AAC.02468-12 URL |
[41] |
Pasipanodya JG, McIlleron H, Burger A, et al. Serum drug concentrations predictive of pulmonary tuberculosis outcomes. J Infect Dis, 2013, 208(9):1464-1473. doi: 10.1093/infdis/jit352.
doi: 10.1093/infdis/jit352 pmid: 23901086 |
[42] |
Alffenaar JC, Gumbo T, Dooley KE, et al. Integrating Pharmacokinetics and Pharmacodynamics in Operational Research to End Tuberculosis. Clin Infect Dis, 2020, 70(8):1774-1780. doi: 10.1093/cid/ciz942.
doi: 10.1093/cid/ciz942 URL |
[43] |
Deshpande D, Alffenaar JC, Köser CU, et al. d-Cycloserine Pharmacokinetics/Pharmacodynamics, Susceptibility, and Dosing Implications in Multidrug-resistant Tuberculosis: A Faustian Deal. Clin Infect Dis, 2018, 67(Suppl 3):S308-S316. doi: 10.1093/cid/ciy624.
doi: 10.1093/cid/ciy624 URL |
[44] |
Winter H, Ginsberg A, Egizi E, et al. Effect of a high-calorie, high-fat meal on the bioavailability and pharmacokinetics of PA-824 in healthy adult subjects. Antimicrob Agents Chemother, 2013, 57(11):5516-5520. doi: 10.1128/AAC.00798-13.
doi: 10.1128/AAC.00798-13 pmid: 23979737 |
[45] |
Sturkenboom MGG, Märtson AG, Svensson EM, et al. Population Pharmacokinetics and Bayesian Dose Adjustment to Advance TDM of Anti-TB Drugs. Clin Pharmacokinet, 2021, 60(6):685-710. doi: 10.1007/s40262-021-00997-0.
doi: 10.1007/s40262-021-00997-0 pmid: 33674941 |
[46] |
吴文文, 陈峰, 郭宏丽, 等. 20家儿童医疗机构常见17种治疗药物监测情况分析. 医药导报, 2020, 39(5):699-703. doi: 10.3870/j.issn.1004-0781.2020.05.026.
doi: 10.3870/j.issn.1004-0781.2020.05.026 |
[47] |
Märtson AG, Sturkenboom MGG, Stojanova J, et al. How to design a study to evaluate therapeutic drug monitoring in infectious diseases? Clin Microbiol Infect, 2020, 26(8):1008-1016. doi: 10.1016/j.cmi.2020.03.008.
doi: 10.1016/j.cmi.2020.03.008 URL |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||