Chinese Journal of Antituberculosis ›› 2021, Vol. 43 ›› Issue (3): 291-294.doi: 10.3969/j.issn.1000-6621.2021.03.017
• Review Articles • Previous Articles Next Articles
ZHANG Chun-xia, XU Gui-sheng(), SHI Jin-yan
Received:
2020-12-07
Online:
2021-03-10
Published:
2021-03-03
Contact:
XU Gui-sheng
E-mail:guishengxu123@163.com
ZHANG Chun-xia, XU Gui-sheng, SHI Jin-yan. Research progress on diagnostic methods of multidrug-resistant tuberculosis[J]. Chinese Journal of Antituberculosis, 2021, 43(3): 291-294. doi: 10.3969/j.issn.1000-6621.2021.03.017
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2021.03.017
[1] | 杨松, 严晓峰. 贝达喹啉治疗耐多药与广泛耐药结核病的现状和展望. 结核病与肺部健康杂志, 2019,8(4):249-252. doi: 10.3969/j.issn.2095-3755.2019.04.004. |
[2] | World Health Organization. Global tuberculosis report 2020. Geneva: World Health Organization, 2020. |
[3] | 刘一典, 桂徐蔚, 申晓娜, 等. 2019年《ATS/CDC/ERS/IDSA临床实践指南:耐药结核病治疗》解读及与我国《耐药结核病化学治疗指南(2019年)》对比. 中国防痨杂志, 2020,42(1):12-16. doi: 10.3969/j.issn.1000-6621.2020.01.005. |
[4] |
Bolhuis MS, van der Werf TS, Akkerman OW. Treatment of Highly Drug-Resistant Pulmonary Tuberculosis. N Engl J Med, 2020,382(24):2376-2377. doi: 10.1056/NEJMc2009939.
doi: 10.1056/NEJMc2009939 URL pmid: 32521141 |
[5] | 中国防痨协会. 耐药结核病化学治疗指南(2019年简版). 中国防痨杂志, 2019,41(10):1025-1073. doi: 10.3969/j.issn.1000-6621.2019.10.001. |
[6] | 朱庆义. 结核分枝杆菌耐多药基因及其检测新技术. 中华临床实验室管理电子杂志, 2020,8(2):65-70. doi: 10.3877/cma.j.issn.2095-5820.2020.02.001. |
[7] |
Lange C, Chesov D, Heyckendorf J, et al. Drug-resistant tuberculosis: An update on disease burden, diagnosis and treatment. Respirology, 2018,23(7):656-673. doi: 10.1111/resp.13304.
doi: 10.1111/resp.13304 URL pmid: 29641838 |
[8] |
Schön T, Miotto P, Köser CU, et al. Mycobacterium tuberculosis drug-resistance testing: challenges, recent developments and perspectives. Clin Microbiol Infect, 2017,23(3):154-160. doi: 10.1016/j.cmi.2016.10.022.
doi: 10.1016/j.cmi.2016.10.022 URL pmid: 27810467 |
[9] | World Health Organization. Guidelines for surveillance of drug resistance in tuberculosis. 4th ed. Geneva: World Health Organization, 2009. |
[10] |
Rancoita PMV, Cugnata F, Gibertoni Cruz AL, et al. Validating a 14-Drug Microtiter Plate Containing Bedaquiline and Delamanid for Large-Scale Research Susceptibility Testing of Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2018,62(9):e00344-18. doi: 10.1128/AAC.00344-18.
doi: 10.1128/AAC.00344-18 URL pmid: 29941636 |
[11] | 李辉. 液体培养方法在结核病和耐药结核病诊断中的应用. 中华检验医学杂志, 2014,37(8):637-638. doi: 10.3760/cma.j.issn.1009-9158.2014.08.019. |
[12] |
Sivaramakrishnan G, Subramanyam B, Kumar MP, et al. Validation of bedaquiline drug-susceptibility testing by BACTEC MGIT 960 system for Mycobacterium tuberculosis. Int J Mycobacteriol, 2019,8(4):329-332. doi: 10.4103/ijmy.ijmy_151_19.
doi: 10.4103/ijmy.ijmy_151_19 URL pmid: 31793501 |
[13] |
Opota O, Mazza-Stalder J, Greub G, et al. The rapid molecular test Xpert MTB/RIF ultra: towards improved tuberculosis diagnosis and rifampicin resistance detection. Clin Microbiol Infect, 2019,25(11):1370-1376. doi: 10.1016/j.cmi.2019.03.021.
doi: 10.1016/j.cmi.2019.03.021 URL pmid: 30928564 |
[14] | World Health Organization. Molecular line probe assays for rapid screening of patients at risk of multidrug-resistant tuberculosis (MDR-TB). Geneva: World Health Organization, 2008. |
[15] | World Health Organization. The use of molecular line probe assays for the detection of resistance to isoniazid and rifampicin. Geneva: World Health Organization, 2016. |
[16] | World Health Organization. WHO consolidated guidelines on tuberculosis. Module 3: diagnosis—rapid diagnostics for tuberculosis detection. Geneva: World Health Organization, 2020. |
[17] | Lee JH, Jo KW, Shim TS. Correlation between GenoType MTBDRplus Assay and Phenotypic Susceptibility Test for Prothionamide in Patients with Genotypic Isoniazid Resistance. Tuberc Respir Dis (Seoul), 2019,82(2):143-150. doi: 10.4046/trd.2018.0027. |
[18] |
Siddiqui S, Brooks MB, Malik AA, et al. Evaluation of GenoType MTBDRplus for the detection of drug-resistant Mycobacterium tuberculosis on isolates from Karachi, Pakistan. PLoS One, 2019,14(8):e0221485. doi: 10.1371/journal.pone.0221485.
doi: 10.1371/journal.pone.0221485 URL pmid: 31425565 |
[19] |
Rufai SB, Umay K, Singh PK, et al. Performance of Genotype MTBDRsl V2.0 over the Genotype MTBDRsl V1 for detection of second line drug resistance: An Indian perspective. PLoS One, 2020,15(3):e0229419. doi: 10.1371/journal.pone.0229419.
URL pmid: 32130233 |
[20] |
Yasemin A, Ahmad S, Afzal S, et al. Evaluation of GeneXpert MTB/RIF Assay for Detection of Pulmonary Tuberculosis on Sputum Samples. J Coll Physicians Surg Pak, 2019,29(1):66-69. doi: 10.29271/jcpsp.2019.01.66.
doi: 10.29271/jcpsp.2019.01.66 URL pmid: 30630573 |
[21] |
Shao L, Qiu C, Zheng L, et al. Comparison of diagnostic accuracy of the GeneXpert Ultra and cell-free nucleic acid assay for tuberculous meningitis: A multicentre prospective study. Int J Infect Dis, 2020,98:441-446. doi: 10.1016/j.ijid.2020.06.076.
URL pmid: 32599283 |
[22] |
Ali IF, Babak F, Fazlollah MS, et al. Rapid detection of MDR-Mycobacterium tuberculosis using modified PCR-SSCP from clinical Specimens. Asian Pac J Trop Biomed, 2014,4(Suppl 1):S165-170. doi: 10.12980/APJTB.4.2014C1186.
doi: 10.12980/APJTB.4.2014C1186 URL pmid: 25183075 |
[23] |
Choi W, Lee J, Cho E, et al. Accurate and effective multidrug-resistant Mycobacterium tuberculosis detection method using gap-filling ligation coupled with high-resolution capillary electrophoresis-based single strand conformation polymorphism. Sci Rep, 2017,7:46090. doi: 10.1038/srep46090.
doi: 10.1038/srep46090 URL pmid: 28422112 |
[24] |
Tahmasebi P, Farnia P, Sheikholslami F, et al. Rapid identification of extensively and extremely drug resistant tuberculosis from multidrug resistant strains; using PCR-RFLP and PCR-SSCP. Iran J Microbiol, 2012,4(4):165-170.
URL pmid: 23205246 |
[25] | 李栋梁, 侯瑞生, 王侃, 等. PCR-SSCP法检测结核分枝杆菌耐药基因突变分析. 中国卫生检验杂志, 2014,24(21):3127-3128. |
[26] |
Coll F, McNerney R, Preston MD, et al. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Med, 2015,7(1):51. doi: 10.1186/s13073-015-0164-0.
doi: 10.1186/s13073-015-0164-0 URL pmid: 26019726 |
[27] | Doyle RM, Burgess C, Williams R, et al. Direct Whole-Genome Sequencing of Sputum Accurately Identifies Drug-Resistant Mycobacterium tuberculosis Faster than MGIT Culture Sequencing. J Clin Microbiol, 2018,56(8):e00666-18. doi: 10.1128/JCM.00666-18. |
[28] |
Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 1998,393(6685):537-544. doi: 10.1038/31159.
doi: 10.1038/31159 URL pmid: 9634230 |
[29] |
Roa MB, Tablizo FA, Morado EKD, et al. Whole-genome sequencing and single nucleotide polymorphisms in multidrug-resistant clinical isolates of Mycobacterium tuberculosis from the Philippines. J Glob Antimicrob Resist, 2018,15:239-245. doi: 10.1016/j.jgar.2018.08.009.
doi: 10.1016/j.jgar.2018.08.009 URL pmid: 30130640 |
[30] |
Gröschel MI, Walker TM, van der Werf TS, et al. Pathogen-based precision medicine for drug-resistant tuberculosis. PLoS Pathog, 2018,14(10):e1007297. doi: 10.1371/journal.ppat.1007297.
doi: 10.1371/journal.ppat.1007297 URL pmid: 30335850 |
[31] |
Makhado NA, Matabane E, Faccin M, et al. Outbreak of multidrug-resistant tuberculosis in South Africa undetected by WHO-endorsed commercial tests: an observational study. Lancet Infect Dis, 2018,18(12):1350-1359. doi: 10.1016/S1473-3099(18)30496-1.
doi: 10.1016/S1473-3099(18)30496-1 URL pmid: 30342828 |
[32] |
Tagliani E, Hassan MO, Waberi Y, et al. Culture and Next-generation sequencing-based drug susceptibility testing unveil high levels of drug-resistant-TB in Djibouti: results from the first national survey. Sci Rep, 2017,7(1):17672. doi: 10.1038/s41598-017-17705-3.
doi: 10.1038/s41598-017-17705-3 URL pmid: 29247181 |
[33] |
Colman RE, Mace A, Seifert M, et al. Whole-genome and targeted sequencing of drug-resistant Mycobacterium tuberculosis on the iSeq100 and MiSeq: A performance, ease-of-use, and cost evaluation. PLoS Med, 2019,16(4):e1002794. doi: 10.1371/journal.pmed.1002794.
doi: 10.1371/journal.pmed.1002794 URL pmid: 31039166 |
[34] |
Tyler AD, Christianson S, Knox NC, et al. Comparison of Sample Preparation Methods Used for the Next-Generation Sequencing of Mycobacterium tuberculosis. PLoS One, 2016,11(2):e0148676. doi: 10.1371/journal.pone.0148676.
doi: 10.1371/journal.pone.0148676 URL pmid: 26849565 |
[35] |
Daniyarov A, Molkenov A, Rakhimova S, et al. Whole genome sequence data of Mycobacterium tuberculosis XDR strain, isolated from patient in Kazakhstan. Data Brief, 2020,33:106416. doi: 10.1016/j.dib.2020.106416.
doi: 10.1016/j.dib.2020.106416 URL pmid: 33102665 |
[36] | Rosse IC, Assis JG, Oliveira FS, et al. Whole genome sequencing of Guzerá cattle reveals genetic variants in candidate genes for production, disease resistance, and heat tolerance. Mamm Genome, 2017,28(1/2):66-80. doi: 10.1007/s00335-016-9670-7. |
[37] |
Ko DH, Lee EJ, Lee SK, et al. Application of next-generation sequencing to detect variants of drug-resistant Mycobacterium tuberculosis: genotype-phenotype correlation. Ann Clin Microbiol Antimicrob, 2019,18(1):2. doi: 10.1186/s12941-018-0300-y.
doi: 10.1186/s12941-018-0300-y URL pmid: 30606210 |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[4] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[5] | Senior Department of Tuberculosis, the 8th Medical Center of Chinese PLA General Hospital , Editorial Board of Chinese Journal of Antituberculosis , Basic and Clinical Speciality Committees of Tuberculosis Control Branch of China International Exchange , Promotive Association for Medical and Health Care . Expert consensus on multidisciplinary diagnosis and treatment of tuberculous peritonitis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 243-257. |
[6] | Duan Hongfei, Tao Yong. Interpretation of social organization standard of Diagnosis Specification of Intraocular Tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 258-261. |
[7] | Jia Hui, Jing Hui, Ling Xiaojie, Wang Yan, Li Xuezheng. The diagnostic value of GeneXpert MTB/RIF Ultra in detecting sputum samples for newly diagnosed pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 298-304. |
[8] | Shi Yuru, Gu Dejian, Wu Jing, Liu Ting, Qin Linghan, Yue Li, Qi Yingjie. Diagnostic value of probe capture-based targeted next-generation sequencing and metagenomic next-generation sequencing for detecting Mycobacterium tuberculosis in bronchoalveolar lavage fluid [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 305-311. |
[9] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[10] | Yang Ziyi, Chen Suting. Research progress on bedaquiline resistance and drug resistance diagnosis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 374-379. |
[11] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[12] | Yan Guangxuan, Wang Xueyu, Wang Yujin, Lan Tinglong, Nie Wenjuan. Diagnostic value of using metagenomic second-generation sequencing on suspected osteoarticular tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 175-180. |
[13] | Qiu Yong, Quan Zhuo, Qu Rong, Tian Fajun, Li Meng, Wang Gengsheng, Wang Ya, Guo Mingcheng, Gao Qian. Evaluation of different tuberculosis diagnostic tools for detecting patients in a primary-level clinic in rural China: a real-world retrospective study [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 181-188. |
[14] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[15] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||