Chinese Journal of Antituberculosis ›› 2021, Vol. 43 ›› Issue (3): 285-290.doi: 10.3969/j.issn.1000-6621.2021.03.016
• Review Articles • Previous Articles Next Articles
WANG Le-le, YANG Song(), TANG Shen-jie(
)
Received:
2020-11-10
Online:
2021-03-10
Published:
2021-03-03
Contact:
YANG Song,TANG Shen-jie
E-mail:yangsong5@aliyun.com;tangsj1106@vip.sina.com
WANG Le-le, YANG Song, TANG Shen-jie. A review of application of therapeutic drug monitoring in tuberculosis treatment[J]. Chinese Journal of Antituberculosis, 2021, 43(3): 285-290. doi: 10.3969/j.issn.1000-6621.2021.03.016
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2021.03.016
[1] | World Health Organization. Global tuberculosis report 2020. Geneva: World Health Organization, 2020. |
[2] | 中国药理学会治疗药物监测研究专业委员会. 治疗药物监测工作规范专家共识(2019年版). 中国医院用药评价与分析, 2019,19(8):897-902. doi: 10.14009/j.issn.1672-2124.2019.08.001. |
[3] |
Heysell SK, Mtabho C, Mpagama S, et al. Plasma drug activity assay for treatment optimization in tuberculosis patients. Antimicrob Agents Chemother, 2011,55(12):5819-5825. doi: 10.1128/AAC.05561-11.
doi: 10.1128/AAC.05561-11 URL pmid: 21968363 |
[4] |
Zhu H, Guo SC, Liu ZQ, et al. Therapeutic drug monitoring of cycloserine and linezolid during anti-tuberculosis treatment in Beijing, China. Int J Tuberc Lung Dis, 2018,22(8):931-936. doi: 10.5588/ijtld.17.0648.
doi: 10.5588/ijtld.17.0648 URL pmid: 29991404 |
[5] |
Sharma PK, Bansal R, Bhardwaj AK, et al. Plasma levels of rifampicin and pyrazinamide with pre and post meal administration intuberculosis patients. Indian J Tuberc, 2018,65(1):35-40. doi: 10.1016/j.ijtb.2017.08.004.
URL pmid: 29332645 |
[6] | Eliasson E, Lindh JD, Malmström RE, et al. Therapeutic drug monitoring for tomorrow. Eur J Clin Pharmacol, 2013,69(Suppl 1):25-32. doi: 10.1007/s00228-013-1504-x. |
[7] |
Pasipanodya JG, McIlleron H, Burger A, et al. Serum drug concentrations predictive of pulmonary tuberculosis outcomes. J Infect Dis, 2013,208(9):1464-1473. doi: 10.1093/infdis/jit352.
doi: 10.1093/infdis/jit352 URL pmid: 23901086 |
[8] |
Falzon D, Jaramillo E, Gilpin C, et al. Therapeutic drug monitoring to prevent acquired drug resistance of fluoroquinolones in the treatment of tuberculosis. Eur Respir J, 2017,49(4):1700317. doi: 10.1183/13993003.00317-2017.
doi: 10.1183/13993003.00317-2017 URL pmid: 28446562 |
[9] |
Peloquin C. The role of therapeutic drug monitoring in Mycobacterial infections. Microbiol Spectr, 2017,5(1). doi: 10.1128/microbiolspec.TNMI7-0029-2016.
URL pmid: 28155806 |
[10] | Bolhuis MS, Akkerman OW, Sturkenboom MG, et al. Individualized treatment of multidrug-resistant tuberculosis using therapeutic drug monitoring. Int J Mycobacteriol, 2016,Suppl 1:S44-S45. doi: 10.1016/j.ijmyco.2016.07.003. |
[11] | Vu DH, Koster RA, Alffenaar JW, et al. Determination of moxifloxacin in dried blood spots using LC-MS/MS and the impact of the hematocrit and blood volume. J Chromatogr B Analyt Technol Biomed Life Sci, 2011,879(15/16):1063-1070. doi: 10.1016/j.jchromb.2011.03.017. |
[12] |
van Beek SW, Ter Heine R, Keizer RJ, et al. Personalized tuberculosis treatment through model-informed dosing of rifampicin. Clin Pharmacokinet, 2019,58(6):815-826. doi: 10.1007/s40262-018-00732-2.
doi: 10.1007/s40262-018-00732-2 URL pmid: 30671890 |
[13] | 国家药典委员会. 中华人民共和国药典(2015年版). 北京: 中国医药科技出版社, 2015. |
[14] |
Bozorg BD, Goodarzi A, Fahimi F, et al. Simultaneous determination of isoniazid, pyrazinamide and rifampin in human plasma by high-performance liquid chromatography and UV Detection. Iran J Pharm Res, 2019,18(4):1735-1741. doi: 10.22037/ijpr.2019.1100849.
doi: 10.22037/ijpr.2019.1100849 URL pmid: 32184842 |
[15] | 雷倩, 赵嫄, 王皓, 等. 3种二线抗结核药品血药浓度测定及其影响因素. 药品分析杂志, 2020,40(8):1405-1412. doi: 10.16155/j.0254-1793.2020.08.10. |
[16] | 邹品娇, 吴娟, 姜云平, 等. 结核患者胸水中异烟肼浓度的测定. 华西医学, 2014,29(8):1483-1486. doi: 10.7507/1002-0179.20140455. |
[17] | 张晓东, 姚芳. 结核性脑膜炎患者脑脊液利福霉素钠浓度监测. 中国当代医药, 2017,24(5):12-14. doi: 10.3969/j.issn.1674-4721.2017.05.004. |
[18] | 石浩强, 何娟, 陆佳倩, 等. LC-MS/MS及HPLC法检测利奈唑胺血药浓度及临床应用. 中国药师, 2017,20(10):1718-1722. doi: 10.3969/j.issn.1008-049X.2017.10.004. |
[19] |
Fachi MM, Vilhena RO, Boger B, et al. LC-QToF-MS method for quantification of ethambutol, isoniazid, pyrazinamide and rifampicin in human plasma and its application. Biomed Chromatogr, 2020,34(5):e4812. doi: 10.1002/bmc.4812.
doi: 10.1002/bmc.4812 URL pmid: 32068899 |
[20] | 李岑, 高敬林, 石蕊, 等. UPLC与HPLC测定人血浆中多索茶碱的比较. 华西药学杂志, 2017,32(3):281-283. doi: 10.13375/j.cnki.wcjps.2017.03.019. |
[21] |
Wu L, Ye Z, Liu H, et al. Rapid and highly sensitive quantification of the anti-tuberculosis agents isoniazid, ethambutol, pyrazinamide, rifampicin and rifabutin in human plasma by UPLC-MS/MS. J Pharm Biomed Anal, 2020,180:113076. doi: 10.1016/j.jpba.2019.113076.
doi: 10.1016/j.jpba.2019.113076 URL pmid: 31896523 |
[22] |
Wang X, Zhang H, Han Y, et al. Rapid and simultaneous determination of ten anti-tuberculosis drugs in human plasma by UPLC-MS/MS with applications in therapeutic drug monitoring. J Chromatogr B Analyt Technol Biomed Life Sci, 2020,1152:122246. doi: 10.1016/j.jchromb.2020.122246.
doi: 10.1016/j.jchromb.2020.122246 URL pmid: 32668377 |
[23] |
Niward K, Ek Blom L, Davies Forsman L, et al. Plasma Levels of Rifampin Correlate with the Tuberculosis Drug Activity Assay. Antimicrob Agents Chemother, 2018,62(5):e00218-18. doi: 10.1128/AAC.00218-18.
doi: 10.1128/AAC.00218-18 URL pmid: 29483112 |
[24] |
Zentner I, Modongo C, Zetola NM, et al. Urine colorimetry for therapeutic drug monitoring of pyrazinamide during tuberculosis treatment. Int J Infect Dis, 2018,68:18-23. doi: 10.1016/j.ijid.2017.12.017.
doi: 10.1016/j.ijid.2017.12.017 URL pmid: 29253711 |
[25] |
Qing LS, Chen TB, Sun WX, et al. Pharmacokinetics comparison, intestinal absorption and acute toxicity assessment of a novel water-soluble astragaloside IV derivative (Astragalosidic Acid, LS-102). Eur J Drug Metab Pharmacokinet, 2019,44(2):251-259. doi: 10.1007/s13318-018-0515-5.
doi: 10.1007/s13318-018-0515-5 URL pmid: 30315409 |
[26] |
Chen C, Xue Y, Li QM, et al. Neutral loss scan-based strategy for integrated identification of amorfrutin derivatives, new peroxisome proliferator-activated receptor gamma agonists, from amorphafruticosa by UPLC-QqQ-MS/MS and UPLC-Q-TOF-MS. J Am Soc Mass Spectrom, 2018,29(4):685-693. doi: 10.1007/s13361-018-1891-4.
doi: 10.1007/s13361-018-1891-4 URL pmid: 29404969 |
[27] |
Xu Y, Wu J, Liao S, et al. Treating tuberculosis with high doses of anti-TB drugs: mechanisms and outcomes. Ann Clin Microbiol Antimicrob, 2017,16(1):67. doi: 10.1186/s12941-017-0239-4.
doi: 10.1186/s12941-017-0239-4 URL pmid: 28974222 |
[28] | World Health Organization. WHO consolidated guidelines on drug-resistant tuberculosis treatment. Geneva: World Health Organization, 2019. |
[29] |
Nahid P, Mase SR, Migliori GB, et al. Treatment of drug-resistant tuberculosis. An official ATS/CDC/ERS/IDSA clinical practice guideline. Am J Respir Crit Care Med, 2019,200(10):e93-e142. doi: 10.1164/rccm.201909-1874ST.
doi: 10.1164/rccm.201909-1874ST URL pmid: 31729908 |
[30] |
Kim HY, Ulbricht E, Ahn YK, et al. Therapeutic drug monitoring practice in patients with active tuberculosis; assessment of opportunities. Eur Respir J, 2021,57(1):2002349. doi: 10.1183/13993003.02349-2020.
doi: 10.1183/13993003.02349-2020 URL pmid: 32817005 |
[31] |
Zuur MA, Akkerman OW, Davies Forsman L, et al. Fixed-dose combination and therapeutic drug monitoring in tuberculosis: friend or foe? Eur Respir J, 2016,48(4):1230-1233. doi: 10.1183/13993003.00833-2016.
doi: 10.1183/13993003.00833-2016 URL pmid: 27587558 |
[32] |
Kumar AKH, Chandrasekaran V, Kannan T, et al. Intrapatient variability in plasma rifampicin & isoniazid in tuberculosis patients. Indian J Med Res, 2018,147(3):287-292. doi: 10.4103/ijmr.IJMR_1961_16.
doi: 10.4103/ijmr.IJMR_1961_16 URL pmid: 29923518 |
[33] | Lei Q, Wang H, Zhao Y, et al. Determinants of serum concentration of first-line anti-tuberculosis drugs from China. Medicine (Baltimore), 2019,98(41):e17523. doi: 10.1097/MD.0000000000017523. |
[34] |
Alsultan A, Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis: An update. Drugs, 74(8):839-854. doi: 10.1007/s40265-014-0222-8.
doi: 10.1007/s40265-014-0222-8 URL pmid: 24846578 |
[35] |
McCallum AD, Sloan DJ. The importance of clinical pharmacokinetic-pharmacodynamic studies in unraveling the determinants of early and late tuberculosis outcomes. Int J Pharmacokinet, 2017,2(3):195-212. doi: 10.4155/ipk-2017-0004.
doi: 10.4155/ipk-2017-0004 URL pmid: 30283633 |
[36] |
Guiastrennec B, Ramachandran G, Karlsson MO, et al. Subo-ptimal antituberculosis drug concentrations and outcomes in small and HIV-coinfected children in india: recommendations for dose modifications. Clin Pharmacol Ther, 2018,104(4):733-741. doi: 10.1002/cpt.987.
doi: 10.1002/cpt.987 URL pmid: 29247506 |
[37] |
Yu X, Zeng X, Shi W, et al. Validation of cycloserine efficacy in treatment of multidrug resistant and extensively drug-resis-tant tuberculosis in Beijing, China. Antimicrob Agents Chemother, 2018,62(3):e01824-17. doi: 10.1128/AAC.01824-17.
doi: 10.1128/AAC.01824-17 URL pmid: 29311073 |
[38] | World Health Organization. Guidelines for the programmatic management of drug-resistant tuberculosis (Emergency update 2008). Geneva: World Health Organization, 2008. |
[39] |
van Altena R, Dijkstra JA, van der Meer ME, et al. Reduced chance of hearing loss associated with therapeutic drug monitoring of aminoglycosides in the treatment of multidrug-resistant tuberculosis. Antimicrob Agents Chemother, 2017,61(3):e01400-16. doi: 10.1128/AAC.01400-16.
doi: 10.1128/AAC.01400-16 URL pmid: 28069654 |
[40] |
Modongo C, Pasipanodya JG, Zetola NM, et al. Amikacin concentrations predictive of ototoxicity in multidrug-resistant tuberculosis patients. Antimicrob Agents Chemother, 2015,59(10):6337-6343. doi: 10.1128/AAC.01050-15.
doi: 10.1128/AAC.01050-15 URL pmid: 26248372 |
[41] |
Metcalfe J, Bacchetti P, Gerona R, et al. Association of anti-tuberculosis drug concentrations in hair and treatment outcomes in MDR- and XDR-TB. ERJ Open Res, 2019,5(2):00046-2019. doi: 10.1183/23120541.00046-2019.
doi: 10.1183/23120541.00046-2019 URL pmid: 31041318 |
[42] |
Reckers A, Wen A, Aguilar D, et al. Validated LC-MS/MS Panel for Quantifying 11 Drug-Resistant TB Medications in Small Hair Samples. J Vis Exp, 2020, (159). doi: 10.3791/60861.
doi: 10.3791/60852 URL pmid: 32538901 |
[43] |
Alffenaar JC, Gumbo T, Dooley KE, et al. Integrating pharmacokinetics and pharmacodynamics in operational research to end Tuberculosis. Clin Infect Dis, 2020,70(8):1774-1780. doi: 10.1093/cid/ciz942.
doi: 10.1093/cid/ciz942 URL pmid: 31560376 |
[44] |
Vu DH, Bolhuis MS, Koster RA, et al. Dried blood spot analysis for therapeutic drug monitoring of linezolid in patients with multidrug-resistant tuberculosis. Antimicrob Agents Chemother, 2012,56(11):5758-5763. doi: 10.1128/AAC.01054-12.
doi: 10.1128/AAC.01054-12 URL pmid: 22926568 |
[45] |
van den Elsen SHJ, Oostenbrink LM, Heysell SK, et al. Systematic review of salivary versus blood concentrations of antituberculosis drugs and their potential for salivary therapeutic drug monitoring. Ther Drug Monit, 2018,40(1):17-37. doi: 10.1097/FTD.0000000000000462.
doi: 10.1097/FTD.0000000000000462 URL pmid: 29120971 |
[46] |
van den Elsen SHJ, Sturkenboom MGG, Akkerman OW, et al. Limited sampling strategies using linear regression and the bayesian approach for therapeutic drug monitoring of moxifloxacin in tuberculosis patients. Antimicrob Agents Chemother, 2019,63(7):e00384-19. doi: 10.1128/AAC.00384-19.
doi: 10.1128/AAC.00384-19 URL pmid: 31010868 |
[47] |
van den Elsen SHJ, Sturkenboom MGG, Van’t Boveneind-Vrubleuskaya N, et al. Population pharmacokinetic model and limited sampling strategies for personalized dosing of levofloxacin in tuberculosis patients. Antimicrob Agents Chemother, 2018,62(12):e01092-18. doi: 10.1128/AAC.01092-18.
doi: 10.1128/AAC.01092-18 URL pmid: 30373800 |
[48] |
Alffenaar JWC, Akkerman OW, Kim HY, et al. Precision and personalized medicine and anti-TB treatment: Is TDM feasible for programmatic use? Int J Infect Dis, 2020,92S:S5-S9. doi: 10.1016/j.ijid.2020.01.041.
doi: 10.1016/j.ijid.2020.01.041 URL pmid: 31996324 |
[49] |
Mtabho CM, Semvua HH, van den Boogaard J, et al. Effect of diabetes mellitus on TB drug concentrations in Tanzanian patients. J Antimicrob Chemother, 2019,74(12):3537-3545. doi: 10.1093/jac/dkz368.
doi: 10.1093/jac/dkz368 URL pmid: 31651031 |
[50] |
Perea-Jacobo R, Muñiz-Salazar R, Laniado-Laborín R, et al. Rifampin pharmacokinetics in tuberculosis-diabetes mellitus patients: a pilot study from Baja California, Mexico. Int J Tuberc Lung Dis, 2019,23(9):1012-1016. doi: 10.5588/ijtld.18.0739.
doi: 10.5588/ijtld.18.0739 URL pmid: 31615609 |
[51] |
Dekkers BGJ, Akkerman OW, Alffenaar JWC. Role of therapeutic drug monitoring in treatment optimization in tuberculosis and diabetes mellitus comorbidity. Antimicrob Agents Chemother, 2019,63(2):e02074-18. doi: 10.1128/AAC.02074-18.
doi: 10.1128/AAC.02074-18 URL pmid: 30455234 |
[52] |
Boeree MJ, Heinrich N, Aarnoutse R. et al. High-dose rifampicin, moxifloxacin, and SQ109 for treating tuberculosis: a multi-arm, multi-stage randomised controlled trial. Lancet Infect Dis, 2017,17(1):39-49. doi: 10.1016/S1473-3099(16)30274-2.
doi: 10.1016/S1473-3099(16)30274-2 URL pmid: 28100438 |
[53] |
Ouedraogo HG, Matteelli A, Sulis G, et al. Pharmacokinetics of plasma lopinavir and ritonavir in tuberculosis-HIV co-infected African adult patients also receiving rifabutin 150 or 300 mg three times per week. Ann Clin Microbiol Antimicrob, 2020,19(1):3. doi: 10.1186/s12941-020-0345-6.
doi: 10.1186/s12941-020-0345-6 URL pmid: 31969147 |
[54] |
Takayoshi M, Wada K, Terada Y, et al. Use of rifabutin to treat tuberculosis in a cardiac transplant recipient: A case report. Int J Clin Pharmacol Ther, 2018,56(4):184-188. doi: 10.5414/CP203137.
doi: 10.5414/CP203137 URL pmid: 29350178 |
[55] |
Cruz AT, Starke JR. Monitoring Treatment of Childhood Tuberculosis and the Role of Therapeutic Drug Monitoring. Indian J Pediatr, 2019,86(8):732-739. doi: 10.1007/s12098-019-02882-y.
doi: 10.1007/s12098-019-02882-y URL pmid: 30815840 |
[56] |
Garcia-Prats AJ, Schaaf HS, Draper HR, et al. Pharmacokinetics, optimal dosing, and safety of linezolid in children with multidrug-resistant tuberculosis: Combined data from two prospective observational studies. PLoS Med, 2019,16(4):e1002789. doi: 10.1371/journal.pmed.1002789.
doi: 10.1371/journal.pmed.1002789 URL pmid: 31039153 |
[57] |
Martial LC, Kerkhoff J, Martinez N, et al. Evaluation of dried blood spot sampling for pharmacokinetic research and therapeutic drug monitoring of anti-tuberculosis drugs in children. Int J Antimicrob Agents, 2018,52(1):109-113. doi: 10.1016/j.ijantimicag.2018.04.020.
doi: 10.1016/j.ijantimicag.2018.04.020 URL pmid: 29751121 |
[58] |
Panjasawatwong N, Wattanakul T, Hoglund RM, et al. Popu-lation pharmacokinetic properties of antituberculosis drugs in vietnamese children with tuberculous meningitis. Antimicrob Agents Chemother, 2020,65(1):e00487-20. doi: 10.1128/AAC.00487-20.
doi: 10.1128/AAC.00487-20 URL pmid: 33139294 |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||