Chinese Journal of Antituberculosis ›› 2020, Vol. 42 ›› Issue (6): 614-620.doi: 10.3969/j.issn.1000-6621.2020.06.014
• Original Articles • Previous Articles Next Articles
ZHANG Shun-xian, QIU Lei, ZHANG Shao-yan, LI Cui, HU Jun, TIAN Li-ming, LU Zhen-hui()
Received:
2020-01-17
Online:
2020-06-10
Published:
2020-06-11
Contact:
LU Zhen-hui
E-mail:Dr_luzh@shutcm.edu.cn
ZHANG Shun-xian, QIU Lei, ZHANG Shao-yan, LI Cui, HU Jun, TIAN Li-ming, LU Zhen-hui. A study of prediction effect of autoregressive integrated moving average model on the monthly reported pulmonary tuberculosis cases in China[J]. Chinese Journal of Antituberculosis, 2020, 42(6): 614-620. doi: 10.3969/j.issn.1000-6621.2020.06.014
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2020.06.014
ARIMA 模型类型 | 参数 | 估计值 | s | t值 | P值 | R2值 | RMSE值 | NBIC值 | Ljung-Box Q值 | df值 | P值 |
---|---|---|---|---|---|---|---|---|---|---|---|
ARIMA(2,1,1) | AR(1) | -0.398 | 0.099 | -4.009 | <0.001 | 0.628 | 9933.982 | 18.581 | 11.045 | 14 | 0.682 |
(1,1,0)12 | AR(2) | -0.294 | 0.094 | -3.119 | 0.002 | ||||||
MA(1) | 0.754 | 0.072 | 10.458 | <0.001 | |||||||
SAR(1) | -0.495 | 0.074 | -6.652 | <0.001 | |||||||
ARIMA(1,1,1) | AR(1) | -0.248 | 0.091 | -2.738 | 0.007 | 0.607 | 10210.333 | 18.601 | 18.859 | 15 | 0.327 |
(1,1,0)12 | SMA(1) | 0.859 | 0.050 | 17.319 | <0.001 | ||||||
SAR(1) | -0.458 | 0.076 | -6.019 | <0.001 | |||||||
ARIMA(0,1,1) | MA(1) | 0.88 | 0.042 | 20.777 | <0.001 | 0.588 | 9784.939 | 18.507 | 11.875 | 15 | 0.688 |
(1,0,1)12 | SAR(1) | 0.995 | 0.008 | 121.115 | <0.001 | ||||||
SMA(1) | 0.872 | 0.105 | 8.296 | <0.001 | |||||||
ARIMA(0,1,1) | MA(1) | 0.875 | 0.045 | 19.243 | <0.001 | 0.684 | 9185.703 | 18.355 | 9.876 | 16 | 0.873 |
(0,1,1)12 | SMA(1) | 0.876 | 0.115 | 7.596 | <0.001 | ||||||
ARIMA(1,0,1) | AR(1) | 0.991 | 0.013 | 76.633 | <0.001 | 0.707 | 9964.917 | 18.576 | 9.836 | 14 | 0.777 |
(1,0,1)12 | MA(1) | 0.861 | 0.053 | 16.183 | <0.001 | ||||||
SAR(1) | 0.990 | 0.011 | 92.778 | <0.001 | |||||||
SMA(1) | 0.817 | 0.097 | 8.422 | <0.001 | |||||||
ARIMA(0,1,1) | MR(1) | 0.955 | 0.025 | 37.691 | <0.001 | 0.482 | 10815.905 | 18.675 | 21.403 | 16 | 0.164 |
(1,0,0)12 | SAR(1) | 0.646 | 0.063 | 10.312 | <0.001 | ||||||
ARIMA(1,0,1) | AR(1) | 0.987 | 0.017 | 56.469 | <0.001 | 0.634 | 10833.238 | 18.710 | 18.407 | 15 | 0.242 |
(1,0,0)12 | MR(1) | 0.916 | 0.048 | 18.961 | <0.001 | ||||||
SAR(1) | 0.661 | 0.063 | 10.546 | <0.001 | |||||||
ARIMA(0,1,1) | MR(1) | 0.907 | 0.039 | 23.467 | <0.001 | 0.594 | 10204.620 | 18.565 | 18.894 | 16 | 0.274 |
(1,1,0)12 | SAR(1) | -0.439 | 0.078 | -5.640 | <0.001 | ||||||
ARIMA(1,1,1) | AR(1) | -0.205 | 0.096 | -2.139 | 0.034 | 0.690 | 9206.244 | 18.394 | 8.797 | 15 | 0.888 |
(0,1,1)12 | MA(1) | 0.833 | 0.056 | 14.869 | <0.001 | ||||||
SMA(1) | 0.840 | 0.099 | 8.495 | <0.001 | |||||||
ARIMA(1,1,2) | AR(1) | -1.000 | 0.001 | -1157.500 | <0.001 | 0.686 | 9247.755 | 18.438 | 10.347 | 14 | 0.736 |
(0,1,1)12 | MA(1) | -0.125 | 0.049 | -2.538 | 0.012 | ||||||
MA(2) | 0.869 | 0.050 | 17.365 | <0.001 | |||||||
SMA(1) | 0.915 | 0.163 | 5.625 | <0.001 | |||||||
ARIMA(0,1,2) | MA(1) | 1.096 | 0.085 | 12.907 | <0.001 | 0.692 | 9147.85 | 18.381 | 9.155 | 15 | 0.817 |
(0,1,1)12 | MA(2) | -0.251 | 0.086 | -2.935 | 0.004 | ||||||
SMA(1) | 0.819 | 0.093 | 8.840 | <0.001 |
月份 | 实际报告 患者例数 | 预测患者例数 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
ARIMA(0,1,1) (0,1,1)12 | 相对误 差(%) | ARIMA(1,0,1) (1,0,1)12 | 相对误 差(%) | ARIMA(1,1,1) (0,1,1)12 | 相对误 差(%) | ARIMA(1,1,2) (0,1,1)12 | 相对误 差(%) | |||
1 | 88597 | 81357 | -8.17 | 84631 | -4.48 | 83187 | -6.11 | 81645 | -7.85 | |
2 | 73096 | 78500 | 7.39 | 81047 | 10.88 | 78947 | 8.00 | 77350 | 5.82 | |
3 | 97866 | 105754 | 8.06 | 106916 | 9.25 | 106248 | 8.56 | 107240 | 9.58 | |
4 | 101191 | 98741 | -2.42 | 99946 | -1.23 | 98852 | -2.31 | 97941 | -3.21 | |
5 | 96106 | 97944 | 1.91 | 99922 | 3.97 | 98403 | 2.39 | 99288 | 3.31 | |
6 | 99555 | 93363 | -6.22 | 95174 | -4.40 | 93465 | -6.12 | 92607 | -6.98 | |
7 | 93318 | 92447 | -0.93 | 95091 | 1.90 | 92932 | -0.41 | 93662 | 0.37 | |
8 | 84304 | 88324 | 4.77 | 91223 | 8.21 | 88746 | 5.27 | 87307 | 3.56 | |
平均相 对误差 | 0.55 | 3.01 | 1.16 | 0.58 |
[1] | Furin J, Cox H, Pai M . Tuberculosis. Lancet, 2019,393(10181):1642-1656. |
[2] | GBD 2017 Disease and Injury Incidence and Prevalence Collabo-rators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990—2017: a systematic analysis for the Global Burden of Disease Study 2017.BD 2017 Disease and Injury Incidence and Prevalence Collabo-rators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990—2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2018,392(10159):1789-1858. |
[3] | 赵珍, 刘年强, 依帕尔·艾海提 , 等. 2008—2018年新疆维吾尔自治区肺结核空间流行病学特征分析. 中国防痨杂志, 2019,41(8):893-899. |
[4] | Duan Q, Chen Z, Chen C , et al. The prevalence of drug-resistant tuberculosis in mainland China: an updated systematic review and meta-analysis. PLoS One, 2016,11(2):e0148041. |
[5] |
Yang C, Luo T, Shen X , et al. Transmission of multidrug-resistant Mycobacterium tuberculosis in Shanghai, China: a re-trospective observational study using whole-genome sequencing and epidemiological investigation. Lancet Infect Dis, 2017,17(3):275-284.
doi: 10.1016/S1473-3099(16)30418-2 URL |
[6] | 言晨绮, 王瑞白, 刘海灿 , 等. ARIMA模型预测2018—2019年我国肺结核发病趋势的应用. 中华流行病学杂志, 2019,40(6):633-637. |
[7] | 王华, 田昌伟, 王文明 , 等. SARIMA模型和SARIMA-GRNN组合模型在肺结核发病率预测中的比较. 寄生虫病与感染性疾病, 2019,17(1):28-31. |
[8] | 孙娜, 许小珊, 冯佳宁 , 等. ARIMA与GM(1,1)模型对我国肺结核年发病人数预测情况的比较. 中国卫生统计, 2019,36(1):71-74. |
[9] | Huang L, Li XX, Abe EM , et al. Spatial-temporal analysis of pulmonary tuberculosis in the northeast of the Yunnan pro-vince, People’s Republic of China. Infect Dis Poverty, 2017,6(1):53. |
[10] | 谭恩丽, 侯慧玉, 包海荣 , 等. 采用自回归移动平均模型预测中国流感病例数. 病毒学报, 2017,33(5):699-705. |
[11] | 陈之源, 常玉雪, 叶尔扎提·吾瓦特 ,等. 灰色模型在新疆维吾尔自治区伊宁市肺结核发病率预测中的应用. 中国防痨杂志, 2019,41(12):1314-1317. |
[12] | 薛亚妮, 张梅, 李存龙 . 基于灰色模型的全国肺结核疫情预测及分析. 中国防痨杂志, 2019,41(7):782-789. |
[13] | 谭恩丽, 王正峰, 周文策 , 等. 我国包虫病报告病例数自回归移动平均模型预测研究. 中国血吸虫病防治杂志, 2018,30(1):47-53. |
[14] | 王娜, 王黎霞, 李仁忠 . 四地市结核病定点医院住院初治涂阳肺结核患者医疗费用及经济负担分析. 中国防痨杂志, 2012,34(2):79-84. |
[15] | 赵飞, 杜昕, 李涛 , 等. 基于世界卫生组织公共数据库的中国结核病流行趋势与预测. 临床药物治疗杂志, 2018,16(4):1-3. |
[16] | Dong D, Jiang WX, Long Q , et al. Impact of an innovative tuberculosis financing and payment model on health service utilization by tuberculosis patients in China: do the poor fare better than the rich? Infect Dis Poverty, 2019,8(1):44. |
[17] | Lange C, Dheda K, Chesov D , et al. Management of drug-resistant tuberculosis. Lancet, 2019,394(10202):953-966. |
[18] | 李雨晴, 万李, 陈杏 , 等. 中国西北四省(区)结核分枝杆菌分离株一线药物耐药状况及其影响因素分析. 中国人兽共患病学报, 2017,33(5):398-402. |
[19] | 丛明瑶, 云妙英, 阿德娜依·阿力肯 . 气候因子对肺结核发病率影响的分析. 中华疾病控制杂志, 2014,18(11):1051-1054. |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||