Chinese Journal of Antituberculosis ›› 2020, Vol. 42 ›› Issue (4): 398-403.doi: 10.3969/j.issn.1000-6621.2020.04.018
• Review Articles • Previous Articles Next Articles
XIANG Hai-bin,LIANG Qiu-zhen,LI Xin-xia,SONG Xing-hua()
Received:
2019-12-10
Online:
2020-04-10
Published:
2020-04-07
Contact:
Xing-hua SONG
E-mail:songxinghua19@163.com
XIANG Hai-bin,LIANG Qiu-zhen,LI Xin-xia,SONG Xing-hua. Advances in the application of anti-tuberculosis nanoscale drug delivery system targeting macrophages[J]. Chinese Journal of Antituberculosis, 2020, 42(4): 398-403. doi: 10.3969/j.issn.1000-6621.2020.04.018
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2020.04.018
分类 | 纳米载体 | 优点 | 缺点 |
---|---|---|---|
聚合物 | 明胶、聚乳酸-羟基乙酸共聚物、聚乳酸、聚酸酐、聚丙烯酸酯、树枝状大分子 | 工艺简单;理化特性可控;生物稳定性高;多途径给药 | 体内降解速度慢;易蓄积;有机溶剂残留毒性 |
脂质体 | 长循环脂质体、糖基脂质体、pH敏感性脂质体 | 技术成熟;无有机溶剂制备;生物降解性及相容性高 | 物理稳定性差;半衰期短;药物负载能力低 |
多糖 | 藻酸盐、直链淀粉、壳聚糖、透明质酸、环糊精 | 本质为碳水化合物;毒性极低;廉价;生物相容性高;生物可降解性好 | 载药量和释放效率低 |
碳纳米 | 石墨、氧化石墨烯、碳纳米管、富勒烯和金刚石 | 载体表面可诱捕细菌且存在大量官能团;易被配体修饰 | 生物利用度低;生物稳定性差;急性炎症反应和进行性纤维化等毒性 |
金属载体 | 银纳米颗粒、镓纳米颗粒、金纳米颗粒、铁纳米颗粒 | 可干扰MTB代谢;具有抗菌活性 | 生物利用度低;时间相关的细胞毒性;重金属中毒 |
文献发 表年份 | 配体 | 纳米载体 | 药物 | 粒径(nm) | 电位(mV) | 包封率(%) | 载药率(%) | 靶向细胞 |
---|---|---|---|---|---|---|---|---|
2019 | 甘露糖 | 氧化石墨烯 | 利福平 | 50~300 | -25 | -b | -b | 恒河猴巨噬细胞[ |
2018 | 甘露糖 | 硬脂胺-脂质体 | 利福平 | 160~250 | 25.7 | 95.5 | 3.5 | 人THP1巨噬细胞系[ |
2018 | 甘露糖 | 硬脂胺-脂质体 | 异烟肼 | 452~530 | 26.9~38.6 | 34.0~50.2 | 1.6~2.3 | 人THP1巨噬细胞系[ |
2018 | β-葡聚糖 | PLGA | 利福平 | 283.1 | -28.6 | -b | 1.1 | 人THP1巨噬细胞系[ |
2017 | 聚乙二醇 | PLGA | 莫西沙星 | 112.16 | 4.76 | 76.55 | 86.75 | 巨噬细胞[ |
2017 | 甘露糖 | 脂质体 | 利福平 | 720~1380 | 44.4~63.7a | 25.5~44.3 | 6.75~14.53 | 鼠J774巨噬细胞系[ |
2016 | 甘露糖 | 硬脂胺-脂质体 | 利福布汀 | 213 | 37.6 | 90 | -b | 鼠RAW264.7细胞系[ |
2015 | 甘露糖 | 阳离子脂质 | 利福平 | 157.4 | 34.3 | 91.6 | 38.4~42.2 | 鼠肺泡NR8383细胞[ |
2015 | 霉菌酸 | PLGA | 异烟肼 | 253~929 | 23.3~21.4a | -b | -b | 鼠骨髓巨噬细胞[ |
2015 | 透明质酸 | 生育酚琥珀酸酯胶束 | 利福平 | 238~299 | 23.7~30.9a | -b | 70.01~79.09 | 鼠肺泡MH-S巨噬细胞[ |
2011 | 甘露糖 | 明胶 | 异烟肼 | 343 | 13.17 | 43.2 | -b | 鼠J774巨噬细胞系[ |
2010 | 乳糖 | PLGA | 利福平 | 184 | -3.2 | 42.2 | 78.4±1.14 | 肺泡巨噬细胞[ |
[1] | World Health Organization. Global tuberculosis report 2019. Geneva: World Health Organization, 2019. |
[2] | Kalscheuer R, Palacios A, Anso I , et al. The Mycobacterium tuberculosis capsule: a cell structure with key implications in pathogenesis. Biochem J, 2019,476(14):1995-2016. |
[3] | Hmama Z, Pena-Diaz S, Joseph S , et al. Immunoevasion and immunosuppression of the macrophage by Mycobacterium tuberculosis. Immunol Rev, 2015,264(1):220-232. |
[4] | Mitchell G, Chen C, Portnoy DA . Strategies Used by Bacteria to Grow in Macrophages. Microbiol Spectr, 2016,4(3). doi: 10.1128/microbiolspec.MCHD-0012-2015. |
[5] | Cardona P, Cardona PJ . Regulatory T Cells in Mycobacterium tuberculosis Infection. Front Immunol, 2019,10:2139. |
[6] | Chai Q, Lu Z, Liu CH . Host defense mechanisms against Mycobacterium tuberculosis (Review). Cell Mol Life Sci, 2019. [Epub ahead of print] |
[7] | de Martino M, Lodi L, Galli L , et al. Immune Response to Mycobacterium tuberculosis: A Narrative Review (Review). Front Pediatr, 2019,7:350. |
[8] | Weiss G, Schaible UE . Macrophage defense mechanisms against intracellular bacteria. Immunol Rev, 2015,264(1):182-203. |
[9] | Singh R, Dwivedi SP, Gaharwar US , et al. Recent updates on drug resistance in Mycobacterium tuberculosis (Review). J Appl Microbiol, 2019. [Epub ahead of print] |
[10] | Lange C, Dheda K, Chesov D , et al. Management of drug-resistant tuberculosis. Lancet, 2019,394(10202):953-966. |
[11] | Delogu G, Goletti D . The spectrum of tuberculosis infection: new perspectives in the era of biologics. J Rheumatol Suppl, 2014,91:11-16. |
[12] | Costa-Gouveia J, Ainsa JA, Brodin P , et al. How can nano-particles contribute to antituberculosis therapy? Drug Discov Today, 2017,22(3):600-607. |
[13] | Cheng H, Chawla A, Yang Y , et al. Development of nanomaterials for bone-targeted drug delivery. Drug Discov Today, 2017,22(9):1336-1350. |
[14] | Sahay G, Alakhova DY, Kabanov AV . Endocytosis of nanomedicines. J Control Release, 2010,145(3):182-195. |
[15] | Patel S, Kim J, Herrera M , et al. Brief update on endocytosis of nanomedicines. Adv Drug Deliv Rev, 2019,144:90-111. |
[16] | Mir M, Ahmed N, Rehman AU . Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf B Bioin-terfaces, 2017,159:217-231. |
[17] | Ding D, Zhu Q . Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. Mater Sci Eng C Mater Biol Appl, 2018,92:1041-1060. |
[18] | Xu Y, Kim CS, Saylor DM , et al. Polymer degradation and drug delivery in PLGA-based drug-polymer applications: A review of experiments and theories. J Biomed Mater Res B Appl Biomater, 2017,105(6):1692-1716. |
[19] | Pandey R, Zahoor A, Sharma S , et al. Nanoparticle encapsulated antitubercular drugs as a potential oral drug delivery system against murine tuberculosis. Tuberculosis (Edinb), 2003,83(6):373-378. |
[20] | Sharma A, Sharma S, Khuller GK . Lectin-functionalized poly (lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. J Antimicrob Chemother, 2004,54(4):761-766. |
[21] | Marcianes P, Negro S, Garcia-Garcia L , et al. Surface-modified gatifloxacin nanoparticles with potential for treating central nervous system tuberculosis. Int J Nanomedicine, 2017,12:1959-1968. |
[22] | Mignani S, Tripathi RP, Chen L , et al. New Ways to Treat Tuberculosis Using Dendrimers as Nanocarriers. Pharmaceutics, 2018, 10(3). pii: E105. |
[23] | Bellini RG, Guimaraes AP, Pacheco MA , et al. Association of the anti-tuberculosis drug rifampicin with a PAMAM dendrimer. J Mol Graph Model, 2015,60:34-42. |
[24] | Dineshkumar P, Panneerselvam T, Brundavani KD , et al. Formulation of Rifampicin Loaded PEGylated 5.0G EDA-PAMAM Dendrimers as Effective Long-Duration Release Drug Carriers. Current Drug Therapy, 2017,12(2):115-126. |
[25] | Klemens SP, Cynamon MH, Swenson CE , et al. Liposome-encapsulated-gentamicin therapy of Mycobacterium avium complex infection in beige mice. Antimicrob Agents Chemother, 1990,34(6):967-970. |
[26] | Merchant Z, Buckton G, Taylor KM , et al. A New Era of Pulmonary Delivery of Nano-antimicrobial Therapeutics to Treat Chronic Pulmonary Infections. Curr Pharm Des, 2016,22(17):2577-2598. |
[27] | Pinheiro M, Ribeiro R, Vieira A , et al. Design of a nanostructured lipid carrier intended to improve the treatment of tuberculosis. Drug Des Devel Ther, 2016,10:2467-2475. |
[28] | Costa A, Pinheiro M, Magalhaes J , et al. The formulation of nanomedicines for treating tuberculosis. Adv Drug Deliv Rev, 2016,102:102-115. |
[29] | Anderson CF, Grimmett ME, Domalewski CJ , et al. Inhalable nanotherapeutics to improve treatment efficacy for common lung diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2020,12(1):e1586. |
[30] | Liang Z, Ni R, Zhou J , et al. Recent advances in controlled pulmonary drug delivery. Drug Discov Today, 2015,20(3):380-389. |
[31] | Mosaiab T, Farr DC, Kiefel MJ , et al. Carbohydrate-based nanocarriers and their application to target macrophages and deliver antimicrobial agents. Adv Drug Deliv Rev, 2019,151/152:94-129. |
[32] | Shivangi, Meena LS . A Novel Approach in Treatment of Tuberculosis by Targeting Drugs to Infected Macrophages Using Biodegradable Nanoparticles. Appl Biochem Biotechnol, 2018,185(3):815-821. |
[33] | Lu E, Franzblau S, Onyuksel H , et al. Preparation of amino-glycoside-loaded chitosan nanoparticles using dextran sulphate as a counterion. J Microencapsul, 2009,26(4):346-354. |
[34] | El Zowalaty ME, Hussein Al Ali SH, Husseiny MI , et al. The ability of streptomycin-loaded chitosan-coated magnetic nanocomposites to possess antimicrobial and antituberculosis activities. Int J Nanomedicine, 2015,10:3269-3274. |
[35] | Maiti D, Tong X, Mou X , et al. Carbon-Based Nanomaterials for Biomedical Applications: A Recent Study. Front Pharmacol, 2018,9:1401. |
[36] | Zou F, Zhou H, Jeong DY , et al. Wrinkled Surface-Mediated Antibacterial Activity of Graphene Oxide Nanosheets. ACS Appl Mater Interfaces, 2017,9(2):1343-1351. |
[37] | De Maio F, Palmieri V, Salustri A , et al. Graphene oxide prevents mycobacteria entry into macrophages through extracellular entrapment. Nanoscale Adv, 2019,1(4):1421-1431. |
[38] | Palmieri V, Papi M, Conti C , et al. The future development of bacteria fighting medical devices: the role of graphene oxide. Expert Rev Med Devices, 2016,13(11):1013-1019. |
[39] | De Maio F, Palmieri V, De Spirito M , et al. Carbon nanomaterials: a new way against tuberculosis. Expert Rev Med Devices, 2019,16(10):863-875. |
[40] | Singh R, Nawale LU, Arkile M , et al. Chemical and biological metal nanoparticles as antimycobacterial agents: A comparative study. Int J Antimicrob Agents, 2015,46(2):183-188. |
[41] | Olakanmi O, Kesavalu B, Pasula R , et al. Gallium nitrate is efficacious in murine models of tuberculosis and inhibits key bacterial Fe-dependent enzymes. Antimicrob Agents Chemother, 2013,57(12):6074-6080. |
[42] | Narayanasamy P, Switzer BL, Britigan BE . Prolonged-acting, multi-targeting gallium nanoparticles potently inhibit growth of both HIV and mycobacteria in co-infected human macrophages. Sci Rep, 2015,5:8824. |
[43] | Choi SR, Britigan BE, Narayanasamy P. Ga(III) Nanoparticles Inhibit Growth of both Mycobacterium tuberculosis and HIV and Release of Interleukin-6 (IL-6) and IL-8 in Coinfected Macrophages. Antimicrob Agents Chemother, 2017, 61(4). pii: e02505-16. |
[44] | Sato MR, Oshiro Junior JA, Machado RT , et al. Nanostructured lipid carriers for incorporation of copper(II) complexes to be used against Mycobacterium tuberculosis. Drug Des Devel Ther, 2017,11:909-921. |
[45] | Vieira ACC, Chaves LL, Pinheiro M , et al. Mannosylated solid lipid nanoparticles for the selective delivery of rifampicin to macrophages. Artif Cells Nanomed Biotechnol, 2018, 46 Suppl 1: S 653-663. |
[46] | Maretti E, Costantino L, Rustichelli C , et al. Surface engineering of Solid Lipid Nanoparticle assemblies by methyl alpha-d-mannopyranoside for the active targeting to macrophages in anti-tuberculosis inhalation therapy. Int J Pharm, 2017,528(1/2):440-451. |
[47] | Gao Y, Sarfraz MK, Clas SD , et al. Hyaluronic Acid-Tocopherol Succinate-Based Self-Assembling Micelles for Targeted Delivery of Rifampicin to Alveolar Macrophages. J Biomed Nanotechnol, 2015,11(8):1312-1329. |
[48] | Lemmer Y, Kalombo L, Pietersen RD , et al. Mycolic acids, a promising mycobacterial ligand for targeting of nanoencapsulated drugs in tuberculosis. J Control Release, 2015,211:94-104. |
[49] | Mustafa S, Devi VK, Pai RS . Effect of PEG and water-soluble chitosan coating on moxifloxacin-loaded PLGA long-circulating nanoparticles. Drug Deliv Transl Res, 2017,7(1):27-36. |
[50] | Bharti S, Kaur G, Jain S , et al. Characteristics and mechanism associated with drug conjugated inorganic nanoparticles. J Drug Target, 2019,27(8):813-829. |
[51] | Pi J, Shen L, Shen H , et al. Mannosylated graphene oxide as macrophage-targeted delivery system for enhanced intracellular M.tuberculosis killing efficiency. Mater Sci Eng C Mater Biol Appl, 2019,103:109777. |
[52] | Costa A, Sarmento B, Seabra V . Mannose-functionalized solid lipid nanoparticles are effective in targeting alveolar macrophages. Eur J Pharm Sci, 2018,114:103-113. |
[53] | Tukulula M, Gouveia L, Paixao P , et al. Functionalization of PLGA Nanoparticles with 1,3-β-glucan Enhances the Intracellular Pharmacokinetics of Rifampicin in Macrophages. Pharm Res, 2018,35(6):111. |
[54] | Song X, Lin Q, Guo L , et al. Rifampicin loaded mannosylated cationic nanostructured lipid carriers for alveolar macrophage-specific delivery. Pharm Res, 2015,32(5):1741-1751. |
[55] | Saraogi GK, Sharma B, Joshi B , et al. Mannosylated gelatin nanoparticles bearing isoniazid for effective management of tuberculosis. J Drug Target, 2011,19(3):219-227. |
[56] | Jain SK, Gupta Y, Ramalingam L , et al. Lactose-Conjugated PLGA Nanoparticles for Enhanced Delivery of Rifampicin to the Lung for Effective Treatment of Pulmonary Tuberculosis. PDA J Pharm Sci Technol, 2010,64(3):278-287. |
[57] | Doshi N, Mitragotri S . Macrophages recognize size and shape of their targets. PLoS One, 2010,5(4):e10051. |
[58] | Dua K, Rapalli VK, Shukla SD , et al. Multi-drug resistant Mycobacterium tuberculosis & oxidative stress complexity: Emerging need for novel drug delivery approaches. Biomed Pharmacother, 2018,107:1218-1229. |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||