Chinese Journal of Antituberculosis ›› 2020, Vol. 42 ›› Issue (12): 1333-1338.doi: 10.3969/j.issn.1000-6621.2020.12.016
• Review Articles • Previous Articles Next Articles
TANG Liang, BAO Yu-cheng, ZHANG Wen-long()
Received:
2020-05-08
Online:
2020-12-10
Published:
2020-12-24
Contact:
ZHANG Wen-long
E-mail:18920180058@189.cn
TANG Liang, BAO Yu-cheng, ZHANG Wen-long. Effects of anti-tubercular agents on intestinal flora and its influence on the organism[J]. Chinese Journal of Antituberculosis, 2020, 42(12): 1333-1338. doi: 10.3969/j.issn.1000-6621.2020.12.016
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2020.12.016
[1] |
Naidoo CC, Nyawo GR, Wu BG, et al. The microbiome and tuberculosis: state of the art, potential applications, and defining the clinical research agenda. Lancet Respir Med, 2019,7(10):892-906. doi: 10.1016/S2213-2600(18)30501-0.
doi: 10.1016/S2213-2600(18)30501-0 URL pmid: 30910543 |
[2] |
Zhang Y, Wu S, Xia Y, et al. Adverse Events Associated with Treatment of Multidrug-Resistant Tuberculosis in China: An Ambispective Cohort Study. Med Sci Monit, 2017,23:2348-2356. doi: 10.12659/msm.904682.
doi: 10.12659/msm.904682 URL pmid: 28520704 |
[3] |
Gilbert JA, Blaser MJ, Caporaso JG, et al. Current understanding of the human microbiome. Nat Med, 2018,24(4):392-400. doi: 10.1038/nm.4517.
doi: 10.1038/nm.4517 URL pmid: 29634682 |
[4] |
Kim S, Covington A, Pamer EG. The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens. Immunol Rev, 2017,279(1):90-105. doi: 10.1111/imr.12563.
doi: 10.1111/imr.12563 URL pmid: 28856737 |
[5] |
Fujisaka S, Avila-Pacheco J, Soto M, et al. Diet, Genetics, and the Gut Microbiome Drive Dynamic Changes in Plasma Metabolites. Cell Rep, 2018,22(11):3072-3086. doi: 10.1016/j.celrep.2018.02.060.
doi: 10.1016/j.celrep.2018.02.060 URL pmid: 29539432 |
[6] |
Oliphant K, Allen-Vercoe E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome, 2019,7(1):91. doi: 10.1186/s40168-019-0704-8.
doi: 10.1186/s40168-019-0704-8 URL pmid: 31196177 |
[7] |
Hu J, Lin S, Zheng B, et al. Short-chain fatty acids in control of energy metabolism. Crit Rev Food Sci Nutr, 2018,58(8):1243-1249. doi: 10.1080/10408398.2016.1245650.
doi: 10.1080/10408398.2016.1245650 URL pmid: 27786539 |
[8] |
MacPherson CW, Shastri P, Mathieu O, et al. Genome-Wide Immune Modulation of TLR3-Mediated Inflammation in Intestinal Epithelial Cells Differs Between Single and Multi-Strain Probiotic Combination. PLoS One, 2017,12(1):e0169847. doi: 10.1371/journal.pone.0169847.
doi: 10.1371/journal.pone.0169847 URL pmid: 28099447 |
[9] |
Ashida N, Yanagihara S, Shinoda T, et al. Characterization of adhesive molecule with affinity to Caco-2 cells in Lactobacillus acidophilus by proteome analysis. J Biosci Bioeng, 2011,112(4):333-337. doi: 10.1016/j.jbiosc.2011.06.001.
doi: 10.1016/j.jbiosc.2011.06.001 URL |
[10] |
Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol, 2011,9(5):356-368. doi: 10.1038/nrmicro2546.
doi: 10.1038/nrmicro2546 URL pmid: 21423246 |
[11] |
Morita N, Umemoto E, Fujita S, et al. GPR31-dependent dendrite protrusion of intestinal CX3CR1+ cells by bacterial metabolites . Nature, 2019,566(7742):110-114. doi: 10.1038/s41586-019-0884-1.
doi: 10.1038/s41586-019-0884-1 URL pmid: 30675063 |
[12] |
Ducarmon QR, Zwittink RD, Hornung BVH, et al. Gut Microbiota and Colonization Resistance against Bacterial Enteric Infection. Microbiol Mol Biol Rev, 2019,83(3):e00007-19. doi: 10.1128/MMBR.00007-19.
doi: 10.1128/MMBR.00007-19 URL pmid: 31167904 |
[13] |
Integrative HMP (iHMP) Research Network Consortium. The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe, 2014,16(3):276-289. doi: 10.1016/j.chom.2014.08.014.
doi: 10.1016/j.chom.2014.08.014 URL |
[14] |
Karczewski J, Poniedziałek B, Adamski Z, et al. The effects of the microbiota on the host immune system. Autoimmunity, 2014,47(8):494-504. doi: 10.3109/08916934.2014.938322.
doi: 10.3109/08916934.2014.938322 URL |
[15] |
Sircana A, Framarin L, Leone N, et al. Altered Gut Microbiota in Type 2 Diabetes: Just a Coincidence? Curr Diab Rep, 2018,18(10):98. doi: 10.1007/s11892-018-1057-6.
doi: 10.1007/s11892-018-1057-6 URL pmid: 30215149 |
[16] |
Vujkovic-Cvijin I, Somsouk M. HIV and the Gut Microbiota: Composition, Consequences, and Avenues for Amelioration. Curr HIV/AIDS Rep, 2019,16(3):204-213. doi: 10.1007/s11904-019-00441-w.
doi: 10.1007/s11904-019-00441-w URL pmid: 31037552 |
[17] |
Chu F, Shi M, Lang Y, et al. Gut Microbiota in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: Current Applications and Future Perspectives. Mediators Inflamm, 2018,2018:8168717. doi: 10.1155/2018/8168717.
doi: 10.1155/2018/8168717 URL pmid: 29805314 |
[18] |
Lange K, Buerger M, Stallmach A, et al. Effects of Antibio-tics on Gut Microbiota. Dig Dis, 2016,34(3):260-268. doi: 10.1159/000443360.
doi: 10.1159/000443360 URL pmid: 27028893 |
[19] |
Osei Sekyere J, Maningi NE, Fourie PB. Mycobacterium tuberculosis, antimicrobials, immunity and lung-gut microbiota crosstalk: current updates and emerging advances. Ann N Y Acad Sci, 2020,1467(1):21-47. doi: 10.1111/nyas.14300.
doi: 10.1111/nyas.14300 URL pmid: 31989644 |
[20] | 唐神结, 高文. 临床结核病学. 2版. 北京: 人民卫生出版社, 2019: 251-287. |
[21] |
Namasivayam S, Maiga M, Yuan W, et al. Longitudinal profiling reveals a persistent intestinal dysbiosis triggered by conventional anti-tuberculosis therapy. Microbiome, 2017,5(1):71. doi: 10.1186/s40168-017-0286-2.
doi: 10.1186/s40168-017-0286-2 URL pmid: 28683818 |
[22] |
Khan N, Mendonca L, Dhariwal A, et al. Intestinal dysbiosis compromises alveolar macrophage immunity to Mycobacterium tuberculosis. Mucosal Immunol, 2019,12(3):772-783. doi: 10.1038/s41385-019-0147-3.
doi: 10.1038/s41385-019-0147-3 URL pmid: 30783183 |
[23] |
Wipperman MF, Fitzgerald DW, Juste MAJ, et al. Antibiotic treatment for tuberculosis induces a profound dysbiosis of the microbiome that persists long after therapy is completed. Sci Rep, 2017,7(1):10767. doi: 10.1038/s41598-017-10346-6.
doi: 10.1038/s41598-017-10346-6 URL pmid: 28883399 |
[24] |
Schirmer M, Smeekens SP, Vlamakis H, et al. Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity. Cell, 2016,167(4):1125-1136. doi: 10.1016/j.cell.2016.10.020.
doi: 10.1016/j.cell.2016.10.020 URL pmid: 27814509 |
[25] |
Tan TG, Sefik E, Geva-Zatorsky N, et al. Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice. Proc Natl Acad Sci U S A, 2016,113(50):E8141-8150. doi: 10.1073/pnas.1617460113.
doi: 10.1073/pnas.1617460113 URL pmid: 27911839 |
[26] |
Luo M, Liu Y, Wu P, et al. Alternation of gut microbiota in patients with pulmonary tuberculosis. Front Physiol, 2017,8:822. doi: 10.3389/fphys.2017.00822.
doi: 10.3389/fphys.2017.00822 URL pmid: 29204120 |
[27] |
Maji A, Misra R, Dhakan DB, et al. Gut microbiome contri-butes to impairment of immunity in pulmonary tuberculosis patients by alteration of butyrate and propionate producers. Environ Microbiol, 2018,20(1):402-419. doi: 10.1111/1462-2920.14015.
doi: 10.1111/1462-2920.14015 URL pmid: 29322681 |
[28] |
Hu Y, Yang Q, Liu B, et al. Gut microbiota associated with pulmonary tuberculosis and dysbiosis caused by anti-tuberculosis drugs. J Infect, 2019,78(4):317-322. doi: 10.1016/j.jinf.2018.08.006.
doi: 10.1016/j.jinf.2018.08.006 URL pmid: 30107196 |
[29] |
Ryndak MB, Laal S. Mycobacterium tuberculosis Primary Infection and Dissemination: A Critical Role for Alveolar Epithelial Cells. Front Cell Infect Microbiol, 2019,9:299. doi: 10.3389/fcimb.2019.00299.
doi: 10.3389/fcimb.2019.00299 URL pmid: 31497538 |
[30] |
Verver S, Warren RM, Beyers N, et al. Rate of reinfection tuberculosis after successful treatment is higher than rate of new tuberculosis. Am J Respir Crit Care Med, 2005,171(12):1430-1435. doi: 10.1164/rccm.200409-1200OC.
doi: 10.1164/rccm.200409-1200OC URL pmid: 15831840 |
[31] |
Glynn JR, Murray J, Bester A, et al. High rates of recurrence in HIV-infected and HIV-uninfected patients with tuberculosis. J Infect Dis, 2010,201(5):704-711. doi: 10.1086/650529.
doi: 10.1086/650529 URL pmid: 20121434 |
[32] |
Lopetuso LR, Scaldaferri F, Petito V, et al. Commensal Clostridia: leading players in the maintenance of gut homeostasis. Gut Pathog, 2013,5(1):23. doi: 10.1186/1757-4749-5-23.
doi: 10.1186/1757-4749-5-23 URL pmid: 23941657 |
[33] |
Serino M. SCFAs-the thin microbial metabolic line between good and bad. Nat Rev Endocrinol, 2019,15(6):318-319. doi: 10.1038/s41574-019-0205-7.
doi: 10.1038/s41574-019-0205-7 URL pmid: 30976118 |
[34] |
Song X, Sun X, Oh SF, et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature, 2020,577(7790):410-415. doi: 10.1038/s41586-019-1865-0.
doi: 10.1038/s41586-019-1865-0 URL pmid: 31875848 |
[35] |
Negatu DA, Yamada Y, Xi Y, et al. Gut microbiota metabolite indole propionic acid targets tryptophan biosynthesis in Mycobacterium tuberculosis. mBio, 2019,10(2):e02781-18. doi: 10.1128/mBio.02781-18.
doi: 10.1128/mBio.02781-18 URL pmid: 30914514 |
[36] |
Shen Y, Giardino Torchia ML, Lawson GW, et al. Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe, 2012,12(4):509-520. doi: 10.1016/j.chom.2012.08.004.
doi: 10.1016/j.chom.2012.08.004 URL |
[37] |
den Besten G, van Eunen K, Groen AK, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res, 2013,54(9):2325-2340. doi: 10.1194/jlr.R036012.
doi: 10.1194/jlr.R036012 URL |
[38] |
Negi S, Pahari S, Bashir H, et al. Gut microbiota regulates mincle mediated activation of lung dendritic cells to protect against Mycobacterium tuberculosis. Front Immunol, 2019,10:1142. doi: 10.3389/fimmu.2019.01142.
doi: 10.3389/fimmu.2019.01142 URL pmid: 31231363 |
[39] |
Segal LN, Clemente JC, Li Y, et al. Anaerobic bacterial fermentation products increase tuberculosis risk in antiretroviral-drug-treated HIV patients. Cell Host Microbe, 2017,21(4):530-537. doi: 10.1016/j.chom.2017.03.003.
doi: 10.1016/j.chom.2017.03.003 URL pmid: 28366509 |
[40] | 李慧, 田芝奥, 吴霞. 648例结核病患者抗结核药物所致不良反应及危险因素分析. 中国防痨杂志, 2017,39(11):1241-1246. doi: 10.3969/j.issn.1000-6621.2017.11.018. |
[41] | Bull MJ, Plummer NT. Part 2: Treatments for Chronic Gastrointestinal Disease and Gut Dysbiosis. Integr Med (Encinitas), 2015,14(1):25-33. |
[42] |
Buffie CG, Bucci V, Stein RR, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostri-dium difficile. Nature, 2015,517(7533):205-208. doi: 10.1038/nature13828.
doi: 10.1038/nature13828 URL pmid: 25337874 |
[43] |
Lu Q, Lai J, Lu H, et al. Gut Microbiota in Bipolar Depression and Its Relationship to Brain Function: An Advanced Exploration. Front Psychiatry, 2019,10:784. doi: 10.3389/fpsyt.2019.00784.
doi: 10.3389/fpsyt.2019.00784 URL pmid: 31736803 |
[44] | 王静, 张蒙, 贺建清. 抗结核药物引起的艰难梭状芽胞杆菌相关性腹泻一例并文献复习. 中国防痨杂志, 2020,42(3):293-296. doi: 10.3969/j.issn.1000-6621.2020.03.021. |
[45] |
Kalakuntla AS, Nalakonda G, Nalakonda K, et al. Probiotics and Clostridium Difficile: A Review of Dysbiosis and the Rehabilitation of Gut Microbiota. Cureus, 2019,11(7):e5063. doi: 10.7759/cureus.5063.
doi: 10.7759/cureus.5063 URL pmid: 31516774 |
[46] |
Amrane S, Hocquart M, Afouda P, et al. Metagenomic and culturomic analysis of gut microbiota dysbiosis during Clostri-dium difficile infection. Sci Rep, 2019,9(1):12807. doi: 10.1038/s41598-019-49189-8.
doi: 10.1038/s41598-019-49189-8 URL pmid: 31488869 |
[47] |
Thanissery R, Winston JA, Theriot CM. Inhibition of Spore Germination, Growth, and Toxin Activity of Clinically Relevant C. Difficile Strains by Gut Microbiota Derived Secondary Bile Acids. Anaerobe, 2017,45:86-100. doi: 10.1016/j.anaerobe.2017.03.004.
doi: 10.1016/j.anaerobe.2017.03.004 URL pmid: 28279860 |
[48] |
Buffie C, Bucci V, Stein RR, et al. Precision microbiome restoration of bile acid-mediated resistance to Clostridium difficile. Nature, 2015,517(7533):205-208. doi: 10.1038/nature13828.
doi: 10.1038/nature13828 URL pmid: 25337874 |
[49] |
Kang JD, Myers CJ, Harris SC, et al. Bile Acid 7α-Dehydroxy-lating Gut Bacteria Secrete Antibiotics that Inhibit Clostridium difficile: Role of Secondary Bile Acids. Cell Chem Biol, 2019,26(1):27-34. doi: 10.1016/j.chembiol.2018.10.003.
doi: 10.1016/j.chembiol.2018.10.003 URL pmid: 30482679 |
[50] |
Pepin J, Saheb N, Coloumbe MA, et al. Emergence of fluoroquinolones as the predominant risk factor for Clostridium difficile-associated diarrhea: a cohort study during an epidemic in Quebec. Clin Infect Dis, 2005,41(9):1254-1260. doi: 10.1086/496986.
doi: 10.1086/496986 URL pmid: 16206099 |
[51] |
Saxton K, Baines SD, Freeman J, et al. Effects of Exposure of Clostridium difficile PCR Ribotypes 027 and 001 to Fluoroquinolones in a Human Gut Model. Antimicrob Agents Chemother, 2009,53(2):412-420. doi: 10.1128/AAC.00306-08.
doi: 10.1128/AAC.00306-08 URL pmid: 18710908 |
[52] |
Sullivan A, Edlund C, Nord CE. Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect Dis, 2001,1(2):101-114. doi: 10.1016/S1473-3099(01)00066-4.
doi: 10.1016/S1473-3099(01)00066-4 URL pmid: 11871461 |
[53] |
Edlund C, Beyer G, Hiemer-Bau M, et al. Comparative effects of moxifloxacin and clarithromycin on the normal intestinal microflora. Scand J Infect Dis, 2000,32(1):81-85. doi: 10.1080/00365540050164272.
doi: 10.1080/00365540050164272 URL pmid: 10716083 |
[54] |
Zhu S, Liu S, Li H, et al. Identification of gut microbiota and metabolites signature in patients with irritable bowel syndrome. Front Cell Infect Microbiol, 2019,9:346. doi: 10.3389/fcimb.2019.00346.
doi: 10.3389/fcimb.2019.00346 URL pmid: 31681624 |
[55] |
El Hamdouni M, Ahid S, Bourkadi JE, et al. Incidence of adverse reactions caused by first-line anti-tuberculosis drugs and treatment outcome of pulmonary tuberculosis patients in Morocco. Infection, 2020,48(1):43-50. doi: 10.1007/s15010-019-01324-3.
doi: 10.1007/s15010-019-01324-3 URL pmid: 31165445 |
[56] |
Prasad R, Singh A, Gupta N. Adverse drug reactions in tuberculosis and management. Indian J Tuberc, 2019,66(4):520-532. doi: 10.1016/j.ijtb.2019.11.005.
doi: 10.1016/j.ijtb.2019.11.005 URL pmid: 31813444 |
[57] |
Lv X, Tang S, Xia Y, et al. Adverse reactions due to directly observed treatment strategy therapy in Chinese tuberculosis patients: a prospective study. PLoS One, 2013,8(6):e65037. doi: 10.1371/journal.pone.0065037.
doi: 10.1371/journal.pone.0065037 URL pmid: 23750225 |
[58] |
Damasceno GS, Guaraldo L, Engstrom EM, et al. Adverse reactions to antituberculosis drugs in Manguinhos, Rio de Janeiro, Brazil. Clinics (Sao Paulo), 2013,68(3):329-337. doi: 10.6061/clinics/2013(03)oa08.
doi: 10.6061/clinics URL |
[59] |
Lin S, Zhao S, Liu J, et al. Efficacy of proprietary Lactobacillus casei for anti-tuberculosis associated gastrointestinal adverse reactions in adult patients: a randomized, open-label, dose-response trial. Food Funct, 2020,11(1):370-377. doi: 10.1039/c9fo01583c.
doi: 10.1039/c9fo01583c URL pmid: 31815260 |
[60] |
Canani RB, Costanzo MD, Leone L, et al. Potential bene cial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol, 2011,17(12):1519-1528. doi: 10.3748/wjg.v17.i12.1519.
doi: 10.3748/wjg.v17.i12.1519 URL pmid: 21472114 |
[61] |
Wadhwa A, Al Nahhas MF, Dierkhising RA, et al. High risk of post-infectious irritable bowel syndrome in patients with Clostridium difficile infection. Aliment Pharmacol Ther, 2016,44(6):576-582. doi: 10.1111/apt.13737.
doi: 10.1111/apt.13737 URL pmid: 27444134 |
[62] | Zhao Y, Qian L. Homocysteine-mediated intestinal epithelial barrier dysfunction in the rat model of irritable bowel syndrome caused by maternal separation. Acta Biochim Biophys Sin(Shanghai), 2014,46(10):917-919. doi: 10.1093/abbs/gmu076. |
[63] |
Pittayanon R, Lau JT, Yuan Y, et al. Gut Microbiota in Patients With Irritable Bowel Syndrome-A Systematic Review. Gastroenterology, 2019,157(1):97-108. doi: 10.1053/j.gastro.2019.03.049.
doi: 10.1053/j.gastro.2019.03.049 URL pmid: 30940523 |
[64] | Ohkusa T, Koido S, Nishikawa Y, et al. Gut Microbiota and Chronic Constipation: A Review and Update. Front Med (Lausanne), 2019,6:19. doi: 10.3389/fmed.2019.00019. |
[65] |
Noorbakhsh H, Yavarmanesh M, Mortazavi SA, et al. Metabolomics analysis revealed metabolic changes in patients with diarrhea-predominant irritable bowel syndrome and metabolic responses to a synbiotic yogurt intervention. Eur J Nutr, 2019,58(8):3109-3119. doi: 10.1007/s00394-018-1855-2.
doi: 10.1007/s00394-018-1855-2 URL pmid: 30392136 |
[66] |
Distrutti E, Monaldi L, Ricci P, et al. Gut microbiota role in irritable bowel syndrome: New therapeutic strategies. World J Gastroenterol, 2016,22(7):2219-2241. doi: 10.3748/wjg.v22.i7.2219.
doi: 10.3748/wjg.v22.i7.2219 URL pmid: 26900286 |
[67] |
Million M, Diallo A, Raoult D. Gut microbiota and malnutrition. Microb Pathog, 2017,106:127-138. doi: 10.1016/j.micpath.2016.02.003.
doi: 10.1016/j.micpath.2016.02.003 URL pmid: 26853753 |
[68] |
Jiao Y, Wu L, Huntington ND, et al. Crosstalk Between Gut Microbiota and Innate Immunity and Its Implication in Autoimmune Diseases. Front Immunol, 2020,11:282. doi: 10.3389/fimmu.2020.00282.
doi: 10.3389/fimmu.2020.00282 URL pmid: 32153586 |
[69] |
Pickard JM, Zeng MY, Caruso R, et al. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev, 2017,279(1):70-89. doi: 10.1111/imr.12567.
doi: 10.1111/imr.12567 URL pmid: 28856738 |
[70] |
Chakaroun RM, Massier L, Kovacs P. Gut Microbiome, Intestinal Permeability, and Tissue Bacteria in Metabolic Disease: Perpetrators or Bystanders. Nutrients, 2020,12(4):1082. doi: 10.3390/nu12041082.
doi: 10.3390/nu12041082 URL |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||