Chinese Journal of Antituberculosis ›› 2019, Vol. 41 ›› Issue (3): 288-293.doi: 10.3969/j.issn.1000-6621.2019.03.009
• Original Articles • Previous Articles Next Articles
Pan CAO1,Fei WANG1,Zhe LIU1,Jin-cheng LIU2,Kuang-li LIANG2,Ji-xin YUAN2,Feng CHI3,Ye-dong HUANG3,Jian YANG1()
Received:
2019-01-03
Online:
2019-03-10
Published:
2019-03-15
Contact:
Jian YANG
E-mail:yj1118@mail.xjtu.edu.cn
Pan CAO,Fei WANG,Zhe LIU,Jin-cheng LIU,Kuang-li LIANG,Ji-xin YUAN,Feng CHI,Ye-dong HUANG,Jian YANG. Value of FPN in pulmonary tuberculosis screening on the thoracic radiography images[J]. Chinese Journal of Antituberculosis, 2019, 41(3): 288-293. doi: 10.3969/j.issn.1000-6621.2019.03.009
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2019.03.009
[1] | 姜世闻 . 《结核病分类》和《肺结核诊断》新标准对结核病控制工作的影响. 中国防痨杂志, 2018,40(3):229-230. |
[2] | World Health Organization. Chest radiography in tuberculosis detection:Summary of current WHO recommendations and guidance on programmatic. Geneva:World Health Organization, 2014. |
[3] | 成君, 夏愔愔, 刘二勇 , 等. 学校结核病突发疫情处置的思考. 中国防痨杂志, 2018,40(2):145-148. |
[4] | 许婕, 王朝才, 夏愔愔 , 等. 我国高疫情地区主动发现的肺结核患者干预前后接受治疗的意愿及影响因素分析. 中国防痨杂志, 2018,40(10):1099-1109. |
[5] |
Esteva A, Kuprel B, Novoa RA , et al. Corrigendum: Dermatologist-level classification of skin cancer with deep neural networks. Nature, 2017,546(7660):686.
doi: 10.1038/nature21056 URL pmid: 28117445 |
[6] |
Hoog AH, Meme HK, van Deutekom H , et al. High sensitivity of chest radio graph reading by clinical offcers in a tuberculosis prevalence survey. Int J Tuberc Lung Dis, 2011,15(10):1308-1314.
doi: 10.5588/ijtld.11.0004 URL pmid: 22283886 |
[7] |
Lakhani P, Sundaram B . Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology, 2017,284(2):574-582.
doi: 10.1148/radiol.2017162326 URL pmid: 28436741 |
[8] |
Jaeger S, Candemir S, Antani S , et al. Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quant Imaging Med Surg, 2014,4(6):475-477.
doi: 10.3978/j.issn.2223-4292.2014.11.20 URL pmid: 25525580 |
[9] |
Bunch PC, Hamilton JF, Sanderson GK , et al. A free-response approach to the measurement and characterization of radio graphic-observer performance. Journal of Applied Photographic Engineering, 1978,4(4):166-171.
doi: 10.1117/12.955926 URL |
[10] |
Pande T, Cohen C, Pai M , et al. Computer-aided detection of pulmonary tuberculosis on digital chest radiographs: a syste-matic review. Int J Tuberc Lung Dis, 2016,20(9):1226-1230.
doi: 10.5588/ijtld.15.0926 URL pmid: 27510250 |
[11] |
Jaeger S, Karargyris A, Candemir S , et al. Automatic scree-ning for tuberculosis in chest radiographs: a survey. Quant Imaging Med Surg, 2013,3(2):89-99.
doi: 10.3978/j.issn.2223-4292.2013.04.03 URL pmid: 3636475 |
[12] |
Melendez J, Sánchez CI, Philipsen RH , et al. An automated tuberculosis screening strategy combining X-ray-based computerai-ded detection and clinical information. Sci Rep, 2016,6:25265.
doi: 10.1038/srep25265 URL pmid: 27126741 |
[13] |
Hwang EJ, Park S, Jin KN , et al. Development and validation of a deep learning-based automatic detection algorithm for active pulmonary tuberculosis on chest radio graphs. Clin Infect Dis, 2018.
doi: 10.1093/cid/ciy967 URL |
[14] | Liu Y, Gadepalli K, Norouzi M , et al. Detecting cancer metastases on gigapixel pathology images. arXiv preprint arXiv: 1703.02442, 2017. |
[15] | Rajpurkar P, Irvin J, Zhu K , et al. CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv preprint arXiv:1711.05225, 2017. |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||