Chinese Journal of Antituberculosis ›› 2015, Vol. 37 ›› Issue (1): 90-94.doi: 10.3969/j.issn.1000-6621.2015.01.017
Previous Articles Next Articles
ZUO Xiao-shu, LU Yu
Received:
2014-10-09
Online:
2015-01-10
Published:
2015-02-08
Contact:
LU Yu
E-mail:luyu4876@hotmail.com
ZUO Xiao-shu, LU Yu. Advance in anti-tuberculous activity of clofazimine[J]. Chinese Journal of Antituberculosis, 2015, 37(1): 90-94. doi: 10.3969/j.issn.1000-6621.2015.01.017
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2015.01.017
[1]World Health Organization(WHO). Global tuberculosis report 2013. Geneva: World Health Organization,2013.[2]Lu Y, Zheng M, Wang B, et al. Clofazimine analogs with efficacy against experimental tuberculosis and reduced potential for accumulation. Antimicrob Agents Chemother, 2011, 55(11): 5185-5193.[3]Mariani F,Goletti D, Ciaramella A,et al. Macrophage response to Mycobacterium tuberculosis during HIV infection: relationships between macrophage activation and apoptosis. Curr Mol Med, 2001, 1(2): 209-216.[4]Barry VC, Belton JG, Conalty ML, et al. A new series of phenazines (rimino-compounds) with high antituberculosis activity. Nature, 1957, 179(4568): 1013-1015.[5]Reddy VM, Nadadhur G, Daneluzzi D, et al. Antituberculosis activity of clofazimine and its new analogs B4154 and B4157. Antimicrob Agents Chemother, 1996, 40(3): 633-636.[6]Jagannath C, Reddy MV, Kailasam S, et al. Chemotherapeutic activity of clofazimine and its analogues against Mycobacterium tuberculosis: In vitro, intracellular, and in vivo studies. Am J Respir Crit Care Med, 1995, 151(4): 1083-1086.[7]Reddy VM, O’Sullivan JF, Gangadharam PR. Antimycobacterial activities of riminophenazines. J Antimicrob Chemother, 1999, 43(5): 615-623.[8]Xu J, Lu Y, Fu L, et al. In vitro and in vivo activity of clofazimine against Mycobacterium tuberculosis persisters. Int J Tuberc Lung Dis, 2012,16(8): 1119-1125.[9]Grant SS, Kaufmann BB, Chand NS, et al. Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals. Proc Natl Acad Sci U S A, 2012, 109(30): 12147-12152.[10]Irwin SM, Gruppo V, Brooks E, et al. Limited activity of clofazimine as a single drug in a mouse model of tuberculosis exhibiting caseous necrotic granulomas. Antimicrob Agents Chemother, 2014, 58(7): 4026-4034.[11]O’Neill AJ, Miller K, Oliva B, et al. Comparison of assays for detection of agents causing membrane damage in Staphylococcus aureus. J Antimicrob Chemother, 2004, 54(6): 1127-1129.[12]Tasneen R, Li SY, Peloquin CA, et al. Sterilizing activity of novel TMC207- and PA-824-containing regimens in a murine model of tuberculosis. Antimicrob Agents Chemother, 2011, 55(12): 5485-5492.[13]Grosset JH, Tyagi S, Almeida DV, et al. Assessment of clofazimine activity in a second-line regimen for tuberculosis in mice. Am J Respir Crit Care Med, 2013, 188(5): 608-612.[14]Williams K, Minkowski A, Amoabeng O, et al. Sterilizing activities of novel combinations lacking first- and second-line drugs in a murine model of tuberculosis. Antimicrob Agents Chemother, 2012, 56(6): 3114-3120.[15]Morrison NE, Marley GM. The mode of action of clofazimine DNA binding studies. Int J Lepr Other Mycobact Dis, 1976, 44(1/2): 133-134.[16]Van Rensburg CE, Jooné GK, O’Sullivan JF, et al. Antimicrobial activities of clofazimine and B669 are mediated by lysophospholipids. Antimicrob Agents Chemother,1992, 36(12): 2729-2735.[17]Yano T, Kassovska-Bratinova S, Teh JS, et al. Reduction of clofazimine by mycobacterial type 2 NADH: quinone oxidoreductase: a pathway for the generation of bactericidal levels of reactive oxygen species. J Biol Chem, 2011, 286(12): 10276-10287.[18]De Bruyn EE, Steel HC, van Rensburg EJ, et al. The riminophenazines, clofazimine and B669, inhibit potassium transport in gram-positive bacteria by a lysophospholipid-dependent mechanism. J Antimicrob Chemother, 1996, 38(3): 349-362.[19]Steel HC, Matlola NM, Anderson R. Inhibition of potassium transport and growth of mycobacteria exposed to clofazimine and B669 is associated with a calcium-independent increase in microbial phospholipase A2 activity. J Antimicrob Chemother, 1999, 44(2): 209-216.[20]Matlola NM, Steel HC, Anderson R. Antimycobacterial action of B4128, a novel tetramethylpiperidyl-substituted phenazine. J Antimicrob Chemother, 2001, 47(2): 199-202.[21]Kagan VE. Tocopherol stabilizes membrane against phospholipase A, free fatty acids, and lysophospholipids. Ann N Y Acad Sci, 1989, 570: 121-135.[22]Anderson R, Zeis BM, Anderson IF. Clofazimine-mediated enhancement of reactive oxidant production by human phagocytes as a possible therapeutic mechanism. Dermatologica, 1988, 176(5): 234-242.[23]Cho SH, Warit S, Wan B, et al. Low-oxygen-recovery assay for high-throughput screening of compounds against nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2007, 51(4): 1380-1385.[24]陆宇,王彬,赵伟杰,等.氯法齐明与其他抗结核药物联用对结核分枝杆菌的作用.中华结核和呼吸杂志,2010,33(9):675-678.[25]Adams LB, Sinha I, Franzblau SG, et al. Effective treatment of acute and chronic murine tuberculosis with liposome-encapsulated clofazimine. Antimicrob Agents Chemother, 1999, 43(7): 1638-1643.[26]张天民,杨树旺.氯苯吩嗪的药理学和临床应用.结核病临床与控制, 2002, 1(1): 39-42.[27]Schaad-Lanyi Z, Dieterle W, Dubois JP, et al. Pharmacokinetics of clofazimine in healthy volunteers. Int J Lepr Other Mycobact Dis, 1987, 55(1): 9-15.[28]Yawalkar SJ, Vischer W. Lamprene (clofazimine) in leprosy. Basic information. Lepr Rev, 1979, 50(2): 135-144.[29]Desikan KV, Balakrishnan S. Tissue levels of clofamine in a case of leprosy. Lepr Rev, 1976, 47(2):107-113.[30]Manseld RE. Tissue concentrations of clofazimine(B663)in man. Am J Trop Med Hyg, 1974, 23(6): 1116-1119.[31]Garrelts JC. Clofazimine: a review of its use in leprosy and Mycohacterium avium complex infection. DICP, 1991, 25(5): 525-531.[32]Holdiness MR. Adverse cutaneous reactions to antituberculosis drugs(Review). Int J Dermatol, 1985, 24(5): 280-285.[33]O’Connor R, O’Sullivan JF, O’Kennedy R. The pharmacology, metabolism, and chemistry of clofazimine. Drug Metab Rev,1995, 27(4): 591-614.[34]Gangadharam PR, Ashtekar D, O’Sullivan JF, et al. In vitro, in vivo, and intracellular chemotherapeutic activity of B746, a clofazimine analogue against Mycobacterium avium complex. Tuber Lung Dis, 1992, 73(4): 192-199.[35]Venkatesan K, Deo N, Gupta UD. Tissue distribution and deposition of clofazimine in mice following oral administration with or without isoniazid. Arzneimittelforschung, 2007, 57(7): 472-474.[36]Horita Y, Doi N, et al. Comparative study of the effects of antituberculosis drugs and antiretroviral drugs on cytochrome P450 3A4 and P-glycoprotein. Antimicrob Agents Chmother, 2014, 58(6): 3168-3176.[37]Levy L. Pharmacologic studies of clofazimine. Am J Trop Med Hyg, 1974, 23(6): 1097-1109.[38]Van Deun A, Maug AK, Salim MA, et al. Short, highly effective, and inexpensive standardized treatment of multidrug-resistant tuberculosis. Am J Respir Crit Care Med, 2010, 182(5): 684-692.[39]Mukherjee JS, Rich ML, Socci AR, et al. Programmes and principles in treatment of multidrug-resistant tuberculosis. Lancet, 2004, 363(9407): 474-481.[40]Hawkins CC, Gold JW, Whimbey E, et al. Mycobacterium avium complex infections in patients with the acquired immunodeficiency syndrome. Ann Intern Med, 1986, 105(2):184-188.[41]Xu HB, Jiang RH, Xiao HP. Clofazimine in the treatment of multidrug-resistant tuberculosis. Clin Microbiol Infect, 2011, 18(11): 1104-1110.[42]Dey T, Brigden G, Cox H, et al. Outcomes of clofazimine for the treatment of drug-resistant tuberculosis: a systematic review and meta-analysis. J Antimicrob Chemother, 2013, 68(2): 284-293.[43]Gopal M, Padayatchi N, Metcalfe JZ,et al. Systematic review of clofazimine for the treatment of drug-resistant tuberculosis. Int J Tuberc Lung Dis, 2013, 17(8): 1001-1007.[44]TB Alliance. Clofazimine. Tuberculosis (Edinb), 2008, 88(2): 96-99.[45]Van Rensburg CE, Anderson R, O’Sullivan JF. Riminophenazine compounds: pharmacology and anti-neoplastic potential. Crit Rev Oncol Hematol, 1997, 25(1): 55-67. |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[4] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[5] | Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Inspire-CODA Research Group. Expert consensus on the treatment of tuberculosis with contezolid [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 123-129. |
[6] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[7] | Li Xuelian, Zhang Hongyan, Wang Jun, Wang Qingfeng, Ma Liping, Chu Naihui, Nie Wenjuan. Safety of extended delamanid use in drug-resistant tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 164-168. |
[8] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[9] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[10] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[11] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
[12] | Palidanguli Abudureheman, Wang Senlu, Gulina Badeerhan, Wang Le, Zulikatiayi Abudula, Wang Xinqi, Maiwulajiang Yimamu, Wang Xijiang. Distribution of Mycobacterium tuberculosis genotypes in Kashgar region and their association with clinical characteristics of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1077-1082. |
[13] | Shi Lulu, Jing Hui, Liang Min, Li Xuezheng. Analysis of clinical results of blood concentration detection of antituberculosis drugs by liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 886-891. |
[14] | Xu Chunhua, Zhu Shiyu, Hu Yi, Yi Kehua, Song Canlei, Wang Zichun, Wu Yong, Wang Qing, Yang Qianru, Shen Xin. Analysis of screening effect of recombinant Mycobacterium tuberculosis fusion protein in screening Mycobacterium tuberculosis infection in close contacts of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 897-902. |
[15] | Zhang Lanyue, Wang Yingchao, Liu Weiyi, Shang Xuetian, Jia Hongyan, Zhu Chuanzhi, Zhang Zongde, Pan Liping. Study on the effect of thiol acetyltransferase mshD on the growth and stress response of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 935-941. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||