Chinese Journal of Antituberculosis ›› 2021, Vol. 43 ›› Issue (9): 883-892.doi: 10.3969/j.issn.1000-6621.2021.09.006
• Expert Note • Previous Articles Next Articles
PANG Yu, GAO Xing-hui, TANG Yi-wei, GAO Meng-qiu()
Received:
2021-03-09
Online:
2021-09-10
Published:
2021-09-07
Contact:
GAO Meng-qiu
E-mail:gaomqwdm@aliyun.com
PANG Yu, GAO Xing-hui, TANG Yi-wei, GAO Meng-qiu. Host immune responses-based methods for laboratory diagnosis and clinical application of tuberculosis[J]. Chinese Journal of Antituberculosis, 2021, 43(9): 883-892. doi: 10.3969/j.issn.1000-6621.2021.09.006
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2021.09.006
第一作者,年份 | 研究参与度 | 研究流失 | 预后因子评估 | 临床转归评估 | 研究混淆 | 统计分析与报告 | 总误差 |
---|---|---|---|---|---|---|---|
儿童 | |||||||
Diel, 2011 | 低 | 低 | 中 | 中 | 低 | 低 | 中 |
Mahomed, 2011 | 中 | 中 | 中 | 中 | 高 | 都 | 中 |
Metin Timur 2014 | 高 | 高 | 中 | 中 | 高 | 高 | 高 |
Noorbakhsh 2011 | 高 | 高 | 高 | 中 | 高 | 高 | 高 |
Song, 2014 | 低 | 中 | 低 | 高 | 中 | 低 | 中 |
免疫缺陷人群 | |||||||
Elzi, 2011 | 高 | 低 | 低 | 中 | 高 | 低 | 高 |
Kim, 2011 | 低 | 低 | 低 | 低 | 中 | 低 | 低 |
Kim, 2015 | 低 | 低 | 低 | 低 | 高 | 低 | 低 |
Lee, 2009 | 高 | 低 | 低 | 中 | 高 | 低 | 高 |
Lee, 2014 | 高 | 中 | 中 | 中 | 低 | 低 | 中 |
Lee, 2015 | 低 | 低 | 中 | 低 | 高 | 低 | 低 |
Milman, 2014 | 低 | 低 | 中 | 低 | 低 | 低 | 低 |
Moon, 2013 | 中 | 低 | 中 | 中 | 中 | 低 | 中 |
Sester, 2014 | 低 | 低 | 中 | 低 | 高 | 低 | 中 |
Sherkat, 2014 | 高 | 高 | 中 | 高 | 高 | 中 | 高 |
结核病高发国家的新移民 | |||||||
Harstad, 2010 | 高 | 低 | 高 | 中 | 高 | 高 | 高 |
Kik, 2010 | 低 | 低 | 低 | 低 | 低 | 低 | 低 |
第一作者,年份 | 检测人数 | IGRA和TST 试验类型 | 阳性结果 人数 | 阴性结果 人数 | 检测结果呈阳性并进 展为结核病的例数 | 检测结果为阴性并进 展为结核病的例数 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
儿童 | |||||||||||
Diel, 2011 | 104 | QFT-GIT | 21 | 83 | 6 | 0 | |||||
TST (≥5mm) | 40 | 64 | 6 | 0 | |||||||
TST (≥10mm) | 40 | 64 | 4 | 2 | |||||||
Mahomed, 2011 | 5244 | QFT-GIT | 2669 | 2575 | 39 | 13 | |||||
TST (≥5mm) | 2894 | 2350 | 40 | 12 | |||||||
Metin Timur 2014 | 69 | QFT-GIT | 0 | 60 | 0 | 0 | |||||
TST (≥15mm) | 69 | 0 | 0 | 0 | |||||||
Noorbakhsh 2011 | 59 | QFT-GIT | 18 | 41 | 10 | 0 | |||||
58 | TST (≥10mm) | 8 | 50 | 3 | 7 | ||||||
Song, 2014 | 2966 | QFT-GIT | 317 | 2649 | 11 | 12 | |||||
2982 | TST (≥10mm) | 663 | 2319 | 13 | 10 | ||||||
TST (≥15mm) | 231 | 2751 | 133 | 10 | |||||||
免疫缺陷人群 | |||||||||||
Elzi, 2011 | 43 | T-SPOT.TB | 25 | 18 | 25 | 18 | |||||
44 | TST (≥5mm) | 22 | 22 | 22 | 22 | ||||||
第一作者,年份 | 检测人数 | IGRA和TST 试验类型 | 阳性结果 人数 | 阴性结果 人数 | 检测结果呈阳性并进 展为结核病的例数 | 检测结果为阴性并进 展为结核病的例数 | |||||
Kim, 2011 | 265 | T-SPOT.TB | 89 | 176 | 4 | 0 | |||||
288 | TST (≥5mm) | 26 | 262 | 1 | 3 | ||||||
Kim, 2015 | 282 | QFT-GIT | 7 | 275 | 0 | 1 | |||||
282 | TST (≥5mm) | 12 | 270 | 0 | 1 | ||||||
Lee, 2009 | 30 | QFT-G | 12 | 18 | 1 | 0 | |||||
T-SPOT.TB | 15 | 17 | 0 | 2 | |||||||
TST (≥10mm) | 20 | 12 | 1 | 1 | |||||||
Lee, 2014 | 159 | QFT-GIT | 26 | 133 | 3 | 2 | |||||
169 | TST (≥10mm) | 19 | 150 | 0 | 5 | ||||||
TST (≥15mm) | 12 | 157 | 0 | 5 | |||||||
Lee, 2015 | 342 | QFT-GIT | 103 | 239 | N/A | 4 | |||||
239 | TST (≥15mm) | 60 | 179 | 2 | 2 | ||||||
Milman, 2014 | 41 | QFT-G | 0 | 41 | 0 | 0 | |||||
12 | TST (≥10mm) | 0 | 12 | 0 | 0 | ||||||
Moon, 2013 | 210 | QFT-GIT | 40 | 170 | 1 | 1 | |||||
244 | TST (≥5mm) | 39 | 205 | 0 | 2 | ||||||
Sester, 2014 | 1238 | QFT-GIT | 159 | 1079 | 3 | 5 | |||||
1217 | T-SPOT.TB | 193 | 1024 | 4 | 6 | ||||||
1282 | TST (≥5mm) | 149 | 1133 | 4 | 7 | ||||||
Sherkat, 2014 | 44 | T-SPOT.TB | 6 | 38 | 1 | 0 | |||||
TST (≥10mm) | 8 | 36 | 1 | 0 | |||||||
结核病高发国家的新移民 | |||||||||||
Harstad, 2010 | 815 | QFT-GIT | 238 | 577 | 8 | 1 | |||||
TST (≥6mm) | 415 | 395 | 8 | 1 | |||||||
813 | TST (≥15mm) | 121 | 692 | 3 | 6 | ||||||
Kik, 2010 | 327 | QFT-GIT | 178 | 149 | 5 | 3 | |||||
299 | T-SPOT.TB | 181 | 118 | 6 | 2 | ||||||
339 | TST (≥6mm) | 288 | 51 | 9 | 0 | ||||||
322 | TST (≥15mm) | 184 | 138 | 7 | 1 |
第一作者 | 培养确认数据集 | 所有数据集 | ||||
---|---|---|---|---|---|---|
诊断优势比(95%CI) | 异质性 | 假阳性率(95%CI) | 诊断优势比(95%CI) | 异质性 | 假阳性率(95%CI) | |
Sweeney | 30.50(14.95~62.24) | 0.00 | 0.18(0.13~0.26) | 16.66(11.56~24.00) | 0.00 | 0.20(0.16~0.24) |
Kaforou | 21.05(12.20~36.34) | 0.00 | 0.23(0.16~0.33) | 14.05(10.10~19.54) | 0.00 | 0.23(0.18~0.28) |
Kaforou | 12.22(6.04~24.71) | 0.00 | 0.22(0.16~0.30) | 9.05(6.42~12.74) | 0.00 | 0.22(0.17~0.29) |
Anderson | 4.96(2.86~8.59) | 0.00 | 0.26(0.09~0.53) | 3.91(2.90~5.26) | 0.00 | 0.32(0.20~0.46) |
Jacobsen | 19.89(10.72~36.89) | 4.03 | 0.22(0.16~0.30) | 13.04(9.54~17.82) | 0.00 | 0.21(0.17~0.26) |
Kaforou | 17.21(11.08~26.74) | 1.13 | 0.25(0.17~0.34) | 13.85(10.32~18.59) | 0.00 | 0.23(0.18~0.29) |
Maertzdorf | 14.38(8.04~25.70) | 19.07 | 0.27(0.21~0.34) | 11.65(8.37~16.22) | 0.00 | 0.26(0.20~0.31) |
Maertzdorf | 13.82(8.75~21.83) | 0.73 | 0.24(0.18~0.31) | 9.69(7.39~12.71) | 3.06 | 0.28(0.23~0.33) |
Anderson | 11.26(7.50~16.92) | 4.80 | 0.28(0.24~0.33) | 10.65(7.87~14.42) | 8.39 | 0.26(0.21~0.31) |
Sambarey | 19.13(10.38~35.25) | 16.87 | 0.19(0.13~0.28) | 12.18(8.54~17.37) | 11.61 | 0.20(0.17~0.24) |
DaCosta | 32.44(14.90~70.63) | 0.00 | 0.26(0.13~0.44) | 13.89(8.14~23.71) | 13.63 | 0.45(0.28~0.64) |
Verhagen | 1.85(1.30~2.63) | 21.43 | 0.47(0.28~0.67) | 2.90(2.03~4.15) | 21.02 | 0.47(0.31~0.65) |
Bloom | 9.94(5.49~17.99) | 50.55 | 0.21(0.13~0.32) | 6.69(4.71~9.49) | 23.29 | 0.24(0.16~0.34) |
Leong | 8.20(4.75~14.16) | 46.33 | 0.27(0.18~0.39) | 8.48(5.96~12.06) | 23.93 | 0.26(0.19~0.34) |
Berry | 17.72(7.41~42.35) | 33.39 | 0.16(0.09~0.27) | 9.26(5.90~14.53) | 25.48 | 0.45(0.25~0.66) |
Berry | 12.62(4.98~31.99) | 42.89 | 0.19(0.04~0.57) | 6.72(3.81~11.85) | 27.48 | 0.66(0.35~0.87) |
第一作者 | ROC曲线 下面积 | 患病率为2% 的阳性预测值 | 患病率为2% 的阴性预测值 |
---|---|---|---|
DaCosta | 0.56(0.50~0.62) | 14.6 | 98.2 |
Sweeney | 0.86(0.78~0.94) | 13.6 | 99.4 |
Kaforou | 0.86(0.78~0.94) | 13.6 | 99.4 |
Kaforou | 0.87(0.80~0.95) | 13.2 | 100.0 |
Leong | 0.73(0.62~0.83) | 11.0 | 99.3 |
Jacobsen | 0.85(0.76~0.93) | 10.8 | NC |
Anderson | 0.85(0.77~0.92) | 8.8 | 99.5 |
Bloom | 0.68(0.56~0.79) | 8.3 | 98.9 |
Sambarey | 0.80(0.72~0.89) | 6.4 | 99.4 |
Kaforou | 0.83(0.76~0.90) | 6.2 | 99.4 |
Maertzdorf | 0.63(0.56~0.69) | 2.8 | 99.5 |
Anderson | 0.46(0.34~0.58) | 2.7 | 98.2 |
Maertzdorf | 0.51(0.50~0.52) | 2.0 | 99.5 |
Verhagen | 0.47(0.45~0.49) | 2.0 | NC |
Berry | 0.50(0.50~0.50) | 2.0 | 98.9 |
Berry | 0.50(0.50~0.50) | 2.0 | NC |
[1] |
Harding E. WHO global progress report on tuberculosis elimination. Lancet Respir Med, 2020, 8(1):19. doi: 10.1016/S2213-2600(19)30418-7.
doi: 10.1016/S2213-2600(19)30418-7 URL |
[2] |
Pai M. Innovations in Tuberculosis Diagnostics: Progress and Translational Challenges. EBioMedicine, 2015, 2(3):182-183. doi: 10.1016/j.ebiom.
doi: 10.1016/j.ebiom URL |
[3] |
Dheda K, Gumbo T, Maartens G, et al. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir Med, 2017: S2213-2600(17)30079-6. doi: 10.1016/S2213-2600(17)30079-6.
doi: 10.1016/S2213-2600(17)30079-6 |
[4] |
Miggiano R, Rizzi M, Ferraris DM. Mycobacterium tuberculosis Pathogenesis, Infection Prevention and Treatment. Pathogens, 2020, 9(5):385. doi: 10.3390/pathogens9050385.
doi: 10.3390/pathogens9050385 URL |
[5] |
Chai Q, Lu Z, Liu CH. Host defense mechanisms against Mycobacterium tuberculosis. Cell Mol Life Sci, 2020, 77(10):1859-1878. doi: 10.1007/s00018-019-03353-5.
doi: 10.1007/s00018-019-03353-5 URL |
[6] |
安军, 逄宇. 重视新型实验室技术助力菌阴肺结核诊断. 中国防痨杂志, 2018, 40(4):345-347. doi: 10.3969/j.issn.1000-6621.2018.04.001.
doi: 10.3969/j.issn.1000-6621.2018.04.001 |
[7] |
崔晓敬, 魏栋, 王春雷, 等. 分子生物学和液体培养方法提高综合医院结核病病原学诊断能力的价值. 中国防痨杂志, 2021, 43(2):143-146. doi: 10.3969/j.issn.1000-6621.2021.02.008.
doi: 10.3969/j.issn.1000-6621.2021.02.008 |
[8] |
Du J, Shu W, Liu Y, et al. Development and validation of external quality assessment panels for mycobacterial culture testing to diagnose tuberculosis in China. Eur J Clin Microbiol Infect Dis, 2019, 38(10):1961-1968. doi: 10.1007/s10096-019-03634-8.
doi: 10.1007/s10096-019-03634-8 URL |
[9] |
Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 1998, 393(6685):537-544. doi: 10.1038/31159.
doi: 10.1038/31159 URL |
[10] |
罗风, 李晓非. 结核病免疫学实验室检测技术新进展. 临床检验杂志, 2020, 38(1):52-55. doi: 10.13602/j.cnki.jcls.2020.01.14.
doi: 10.13602/j.cnki.jcls.2020.01.14 |
[11] | 中华人民共和国国家卫生和计划生育委员会. WS 288—2017肺结核诊断. 2017-11-09. |
[12] |
Turk JL. Von Pirquet, allergy and infectious diseases: a review. J R Soc Med, 1987, 80(1):31-33.
doi: 10.1177/014107688708000113 URL |
[13] |
Yang H, Kruh-Garcia NA, Dobos KM. Purified protein deriva-tives of tuberculin--past, present, and future. FEMS Immunol Med Microbiol, 2012, 66(3):273-280. doi: 10.1111/j.1574-695X.2012.01002.x.
doi: 10.1111/j.1574-695X.2012.01002.x URL |
[14] |
Monaghan ML, Doherty ML, Collins JD, et al. The tuberculin test. Vet Microbiol, 1994, 40(1/2):111-124. doi: 10.1016/0378-1135(94)90050-7.
doi: 10.1016/0378-1135(94)90050-7 URL |
[15] |
Kasempimolporn S, Areekul P, Thaveekarn W, et al. Application of transdermal patches with new skin test reagents for detection of latent tuberculosis. J Med Microbiol, 2019, 68(9):1314-1319. doi: 10.1099/jmm.0.001037.
doi: 10.1099/jmm.0.001037 pmid: 31274404 |
[16] |
卢水华, 陆伟. 重组结核杆菌融合蛋白(EC)临床应用专家共识. 中国防痨杂志, 2020, 42(8):761-768. doi: 10.3969/j.issn.1000-6621.2020.08.001.
doi: 10.3969/j.issn.1000-6621.2020.08.001 |
[17] |
Li F, Xu M, Qin C, et al. Recombinant fusion ESAT6-CFP10 immunogen as a skin test reagent for tuberculosis diagnosis: an open-label, randomized, two-centre phase 2a clinical trial. Clin Microbiol Infect, 2016, 22(10):889.e9-889.e16. doi: 10.1016/j.cmi.2016.07.015.
doi: 10.1016/j.cmi.2016.07.015 |
[18] |
Li F, Xu M, Zhou L, et al. Safety of Recombinant Fusion Protein ESAT6-CFP10 as a Skin Test Reagent for Tuberculosis Diagnosis: an Open-Label, Randomized, Single-Center Phase I Clinical Trial. Clin Vaccine Immunol, 2016, 23(9):767-773. doi: 10.1128/CVI.00154-16.
doi: 10.1128/CVI.00154-16 URL |
[19] |
周利君, 李锋, 卢水华. 以结核分枝杆菌特异性抗原为基础的皮肤试验研究进展. 中华结核和呼吸杂志, 2015, 38(8):619-622. doi: 10.3760/cma.j.issn.1001-0939.2015.08.015.
doi: 10.3760/cma.j.issn.1001-0939.2015.08.015 |
[20] |
Lalvani A, Pathan AA, McShane H, et al. Rapid detection of Mycobacterium tuberculosis infection by enumeration of antigen-specific T cells. Am J Respir Crit Care Med, 2001, 163(4):824-828. doi: 10.1164/ajrccm.163.4.2009100.
doi: 10.1164/ajrccm.163.4.2009100 URL |
[21] |
Lalvani A. Diagnosing tuberculosis infection in the 21st century: new tools to tackle an old enemy. Chest, 2007, 131(6):1898-1906. doi: 10.1378/chest.06-2471.
doi: 10.1378/chest.06-2471 pmid: 17565023 |
[22] |
Manuel O, Kumar D. QuantiFERON-TB Gold assay for the diagnosis of latent tuberculosis infection. Expert Rev Mol Diagn, 2008, 8(3):247-256. doi: 10.1586/14737159.8.3.247.
doi: 10.1586/14737159.8.3.247 pmid: 18598104 |
[23] |
Chen G, Wang H, Wang Y. Clinical application of Quanti-FERON-TB Gold in-tube in the diagnosis and treatment of tuberculosis. Eur J Clin Microbiol Infect Dis, 2020, 39(4):607-612. doi: 10.1007/s10096-019-03768-9.
doi: 10.1007/s10096-019-03768-9 URL |
[24] |
Pourakbari B, Mamishi S, Benvari S, et al. Comparison of the QuantiFERON-TB Gold Plus and QuantiFERON-TB Gold In-Tube interferon-γ release assays: A systematic review and meta-analysis. Adv Med Sci, 2019, 64(2):437-443. doi: 10.1016/j.advms.2019.09.001.
doi: 10.1016/j.advms.2019.09.001 URL |
[25] |
Shafeque A, Bigio J, Hogan CA, et al. Fourth-Generation QuantiFERON-TB Gold Plus: What Is the Evidence? J Clin Microbiol, 2020, 58(9):e01950-19. doi: 10.1128/JCM.01950-19.
doi: 10.1128/JCM.01950-19 |
[26] |
Sotgiu G, Saderi L, Petruccioli E, et al. QuantiFERON TB Gold Plus for the diagnosis of tuberculosis: a systematic review and meta-analysis. J Infect, 2019, 79(5):444-453. doi: 10.1016/j.jinf.2019.08.018.
doi: 10.1016/j.jinf.2019.08.018 URL |
[27] |
Sadatsafavi M, Shahidi N, Marra F, et al. A statistical method was used for the meta-analysis of tests for latent TB in the absence of a gold standard, combining random-effect and latent-class methods to estimate test accuracy. J Clin Epidemiol, 2010, 63(3):257-269. doi: 10.1016/j.jclinepi.2009.04.008.
doi: 10.1016/j.jclinepi.2009.04.008 pmid: 19692208 |
[28] |
简贵香, 黄延风. T细胞酶联免疫斑点试验在2348例儿童结核病中的诊断价值. 四川大学学报(医学版), 2020, 51(1):92-96. doi: 10.12182/20200160104.
doi: 10.12182/20200160104 |
[29] |
Ferguson TW, Tangri N, Macdonald K, et al. The diagnostic accuracy of tests for latent tuberculosis infection in hemodialysis patients: a systematic review and meta-analysis. Transplantation, 2015, 99(5):1084-1091. doi: 10.1097/TP.0000000000000451.
doi: 10.1097/TP.0000000000000451 pmid: 25286055 |
[30] |
Auguste P, Tsertsvadze A, Pink J, et al. Comparing interferon-gamma release assays with tuberculin skin test for identifying latent tuberculosis infection that progresses to active tuberculosis: systematic review and meta-analysis. BMC Infect Dis, 2017, 17(1):200. doi: 10.1186/s12879-017-2301-4.
doi: 10.1186/s12879-017-2301-4 pmid: 28274215 |
[31] |
Essone PN, Kalsdorf B, Chegou NN, et al. Bifunctional T-cell-derived cytokines for the diagnosis of tuberculosis and treatment monitoring. Respiration, 2014, 88(3):251-261. doi: 10.1159/000365816.
doi: 10.1159/000365816 URL |
[32] |
Zhang L, Cheng X, Bian S, et al. Utility of Th1-cell immune responses for distinguishing active tuberculosis from non-active tuberculosis: A case-control study. PLoS One, 2017, 12(5):e0177850. doi: 10.1371/journal.pone.0177850.
doi: 10.1371/journal.pone.0177850 URL |
[33] |
Zhang L, Wan S, Ye S, et al. Application of IFN-γ/IL-2 FluoroSpot assay for distinguishing active tuberculosis from non-active tuberculosis: A cohort study. Clin Chim Acta, 2019, 499:64-69. doi: 10.1016/j.cca.2019.08.022.
doi: 10.1016/j.cca.2019.08.022 URL |
[34] |
Singhania A, Wilkinson RJ, Rodrigue M, et al. The value of transcriptomics in advancing knowledge of the immune response and diagnosis in tuberculosis. Nat Immunol, 2018, 19(11):1159-1168. doi: 10.1038/s41590-018-0225-9.
doi: 10.1038/s41590-018-0225-9 pmid: 30333612 |
[35] |
Berry MP, Graham CM, McNab FW, et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature, 2010, 466(7309):973-977. doi: 10.1038/nature09247.
doi: 10.1038/nature09247 URL |
[36] |
逄宇, 王玉峰, 高兴辉, 等. 结核分枝杆菌实验室检测产品和技术应用进展. 中国临床新医学, 2021, 14(1):23-34. doi: 10.3969/j.issn.1674-3806.2021.01.05.
doi: 10.3969/j.issn.1674-3806.2021.01.05 |
[37] |
Maertzdorf J, Repsilber D, Parida SK, et al. Human gene expression profiles of susceptibility and resistance in tuberculosis. Genes Immun, 2011, 12(1):15-22. doi: 10.1038/gene.2010.51.
doi: 10.1038/gene.2010.51 pmid: 20861863 |
[38] |
Kaforou M, Wright VJ, Oni T, et al. Detection of tuberculosis in HIV-infected and -uninfected African adults using whole blood RNA expression signatures: a case-control study. PLoS Med, 2013, 10(10):e1001538. doi: 10.1371/journal.pmed.1001538.
doi: 10.1371/journal.pmed.1001538 URL |
[39] |
Gebremicael G, Kassa D, Alemayehu Y, et al. Gene expression profiles classifying clinical stages of tuberculosis and monitoring treatment responses in Ethiopian HIV-negative and HIV-positive cohorts. PLoS One, 2019, 14(12):e0226137. doi: 10.1371/journal.pone.0226137.
doi: 10.1371/journal.pone.0226137 URL |
[40] |
Lydon EC, Ko ER, Tsalik EL. The host response as a tool for infectious disease diagnosis and management. Expert Rev Mol Diagn, 2018, 18(8):723-738. doi: 10.1080/14737159.2018.1493378.
doi: 10.1080/14737159.2018.1493378 URL |
[41] |
Warsinske H, Vashisht R, Khatri P. Host-response-based gene signatures for tuberculosis diagnosis: A systematic comparison of 16 signatures. PLoS Med, 2019, 16(4):e1002786. doi: 10.1371/journal.pmed.1002786.
doi: 10.1371/journal.pmed.1002786 URL |
[42] |
Ruhwald M, Bjerregaard-Andersen M, Rabna P, et al. CXCL10/IP-10 release is induced by incubation of whole blood from tuberculosis patients with ESAT-6, CFP10 and TB7.7. Microbes Infect, 2007, 9(7):806-812. doi: 10.1016/j.micinf.2007.02.021.
doi: 10.1016/j.micinf.2007.02.021 pmid: 17533146 |
[43] |
Ruhwald M, Aabye MG, Ravn P. IP-10 release assays in the diagnosis of tuberculosis infection: current status and future directions. Expert Rev Mol Diagn, 2012, 12(2):175-187. doi: 10.1586/erm.11.97.
doi: 10.1586/erm.11.97 pmid: 22369377 |
[44] |
Sweeney TE, Braviak L, Tato CM, et al. Genome-wide expression for diagnosis of pulmonary tuberculosis: a multicohort analysis. Lancet Respir Med, 2016, 4(3):213-224. doi: 10.1016/S2213-2600(16)00048-5.
doi: 10.1016/S2213-2600(16)00048-5 URL |
[45] |
Warsinske HC, Rao AM, Moreira FMF, et al. Assessment of Validity of a Blood-Based 3-Gene Signature Score for Progression and Diagnosis of Tuberculosis, Disease Severity, and Treatment Response. JAMA Netw Open, 2018, 1(6):e183779. doi: 10.1001/jamanetworkopen.2018.3779.
doi: 10.1001/jamanetworkopen.2018.3779 URL |
[46] |
Södersten E, Ongarello S, Mantsoki A, et al. Diagnostic Accuracy Study of a Novel Blood-Based Assay for Identification of Tuberculosis in People Living with HIV. J Clin Microbiol, 2021, 59(3):e01643-20. doi: 10.1128/JCM.01643-20.
doi: 10.1128/JCM.01643-20 |
[47] |
Moreira FMF, Verma R, Pereira Dos Santos PC, et al. Blood-based host biomarker diagnostics in active case finding for pulmonary tuberculosis: A diagnostic case-control study. EClinicalMedicine, 2021, 33:100776. doi: 10.1016/j.eclinm.2021.100776.
doi: 10.1016/j.eclinm.2021.100776 URL |
[48] |
姚嵩, 方雪晖. 《中国结核病预防控制工作技术规范(2020年版)》 解读与思考. 热带病与寄生虫学, 2020, 18(3):138-141,137. doi: 10.3969/j.issn.1672-2302.2020.03.002.
doi: 10.3969/j.issn.1672-2302.2020.03.002 |
[49] |
Petruccioli E, Chiacchio T, Pepponi I, et al. First characterization of the CD4 and CD8 T-cell responses to QuantiFERON-TB Plus. J Infect, 2016, 73(6):588-597. doi: 10.1016/j.jinf.2016.09.008.
doi: S0163-4453(16)30249-3 pmid: 27717779 |
[50] |
Lee MR, Chang CH, Chang LY, et al. CD8 response mea-sured by QuantiFERON-TB Gold Plus and tuberculosis disease status. J Infect, 2019, 78(4):299-304. doi: 10.1016/j.jinf.2019.01.007.
doi: 10.1016/j.jinf.2019.01.007 URL |
[51] |
Cattamanchi A, Smith R, Steingart KR, et al. Interferon-gamma release assays for the diagnosis of latent tuberculosis infection in HIV-infected individuals: a systematic review and meta-analysis. J Acquir Immune Defic Syndr, 2011, 56(3):230-238. doi: 10.1097/QAI.0b013e31820b07ab.
doi: 10.1097/QAI.0b013e31820b07ab pmid: 21239993 |
[52] |
Jiang W, Shao L, Zhang Y, et al. High-sensitive and rapid detection of Mycobacterium tuberculosis infection by IFN-gamma release assay among HIV-infected individuals in BCG-vaccinated area. BMC Immunol, 2009, 10:31. doi: 10.1186/1471-2172-10-31.
doi: 10.1186/1471-2172-10-31 URL |
[53] |
Petruccioli E, Chiacchio T, Navarra A, et al. Effect of HIV-infection on QuantiFERON-plus accuracy in patients with active tuberculosis and latent infection. J Infect, 2020, 80(5):536-546. doi: 10.1016/j.jinf.2020.02.009.
doi: S0163-4453(20)30093-1 pmid: 32097688 |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||