Chinese Journal of Antituberculosis ›› 2021, Vol. 43 ›› Issue (2): 190-193.doi: 10.3969/j.issn.1000-6621.2021.02.016
• Review Articles • Previous Articles Next Articles
CAO Xin-yu, XUE Miao(), WEN Yan, LIU Li
Received:
2020-11-12
Online:
2021-02-10
Published:
2021-02-03
Contact:
XUE Miao
E-mail:876858067@qq.com
CAO Xin-yu, XUE Miao, WEN Yan, LIU Li. Research progress on susceptibility genes of anti-tuberculous drug-induced liver injury[J]. Chinese Journal of Antituberculosis, 2021, 43(2): 190-193. doi: 10.3969/j.issn.1000-6621.2021.02.016
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2021.02.016
[1] | 石富国, 古明, 马世平. 一线主要抗结核药不良反应分布特点文献分析. 中国药物警戒, 2011,8(7):434-437. |
[2] | 陈羽, 刘映, 王静, 等. 抗结核病药物治疗老年肺结核的不良反应及影响因素. 中国老年学杂志, 2015,35(8):2079-2081. doi: 10.3969/j.issn.1005-9202.2015.08.032. |
[3] | 张明媛, 雷建平, 闫世明, 等. 抗结核药物所致肝损伤及肝病患者抗结核药物治疗——大陆地区诊治建议与台湾《结核病诊治指引》相关介绍. 临床肝胆病杂志, 2015,31(11):1776-1781. doi: 10.3969/j.issn. 1001-5256.2015.11.004. |
[4] | 尤媛媛, 任鹏飞, 陈永芳. 初治肺结核患者抗结核治疗所致药物性肝损伤的危险因素. 河南医学研究, 2020,29(7):1173-1176. doi: 10.3969/j.issn.1004-437X.2020.07.008. |
[5] | 蒋博峰, 马晨晨, 陈阳贵, 等. 抗结核药物不良反应发生率及其影响因素分析. 中华疾病控制杂志, 2017,21(2):160-163. doi: 10.16462/j.cnki.zhjbkz.2017.02.013. |
[6] | 言洁, 曹毅敏. 抗结核药物不良反应发生率及危险因素分析. 北方药学, 2017,14(12):177-178. doi: 10.3969/j.issn.1672-8351.2017.12.144. |
[7] | 邵海峰. 抗结核病药物治疗老年肺结核的不良反应及影响因素研究. 实用中西医结合临床, 2017,17(7):157-158. doi: 10.13638/j.issn.1671-4040.2017.07.102. |
[8] | Wu S, Wang YJ, Tang X, et al. Genetic Polymorphisms of Glutathione S-Transferase P1 (GSTP1) and the Incidence of Anti-Tuberculosis Drug-Induced Hepatotoxicity. PLoS One, 2016,11(6):e0157478. doi: 10.1371/journal.pone.0157478. |
[9] | Cai Y, Yi J, Zhou C, et al. Pharmacogenetic study of drug-metabolising enzyme polymorphisms on the risk of anti-tuberculosis drug-induced liver injury: a meta-analysis. PLoS One, 2012,7(10):e47769. doi: 10.1371/journal.pone.0047769. |
[10] | Henderson CJ, Wolf CR. Disruption of the glutathione transferase pi class genes. Methods Enzymol, 2005,401:116-135. doi: 10.1016/S0076-6879(05)01007-4. |
[11] | Zhang M, Wu SQ, He JQ. Are genetic variations in glutathione S-transferases involved in anti-tuberculosis drug-induced liver injury? A meta-analysis. J Clin Pharm Ther, 2019,44(6):844-857. doi: 10.1111/jcpt.13006. |
[12] | Wang YM, Chai SC, Brewer CT, et al. Pregnane X receptor and drug-induced liver injury. Expert Opin Drug Metab Toxicol, 2014,10(11):1521-1532. doi: 10.1517/17425255.2014.963555. |
[13] | Yang M, Pan H, Chen H, et al. Association between NR1I2 polymorphisms and susceptibility to anti-tuberculosis drug-induced hepatotoxicity in an Eastern Chinese Han population: A case-control study. Infect Genet Evol, 2020,83:104349. doi: 10.1016/j.meegid.2020.104349. |
[14] | Wang Y, Xiang X, Huang WW, et al. Association of PXR and CAR Polymorphisms and Antituberculosis Drug-Induced Hepatotoxicity. Sci Rep, 2019,9(1):2217. doi: 10.1038/s41598-018-38452-z. |
[15] | Zhang J, Zhao Z, Bai H, et al. Genetic polymorphisms in PXR and NF-κB1 influence susceptibility to anti-tuberculosis drug-induced liver injury. PLoS One, 2019,14(9):e0222033. doi: 10.1371/journal.pone.0222033. |
[16] | Santos EA, Gonçalves JCS, Fleury MK, et al. Relationship of anti-tuberculosis drug-induced liver injury and genetic polymorphisms in CYP2E1 and GST. Braz J Infect Dis, 2019,23(6):381-387. doi: 10.1016/j.bjid.2019.09.003. |
[17] | Chen R, Wang J, Zhang Y, et al. Key factors of susceptibility to anti-tuberculosis drug-induced hepatotoxicity. Arch Toxicol, 2015,89(6):883-897. doi: 10.1007/s00204-015-1473-1. |
[18] | Jaswal A, Sharma M, Raghuvanshi S, et al. Therapeutic Efficacy of Nigella Sativa Linn. against Antituberculosis Drug-Induced Hepatic Injury in Wistar Rats. J Environ Pathol Toxicol Oncol, 2016,35(1):59-71. doi: 10.1615/JEnvironPatholToxicolOncol.2016013789. |
[19] | Verma AK, Yadav A, Singh SV, et al. Corrigendum to “Isoniazid induces apoptosis: Role of oxidative stress and inhibition of nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2)” [Life Sci 119 (2018) 23-33]. Life Sci, 2020,240:117136. doi: 10.1016/j.lfs.2019.117136. |
[20] | Yew WW, Chang KC, Chan DP. Oxidative Stress and First-Line Antituberculosis Drug-Induced Hepatotoxicity. Antimicrob Agents Chemother, 2018,62(8):e02637-17. doi: 10.1128/AAC.02637-17. |
[21] | Yang M, Zhang H, Tao B, et al. Possible association of HMOX1 and NQO1 polymorphisms with anti-tuberculosis drug-induced liver injury: A matched case-control study. J Clin Pharm Ther, 2019,44(4):534-542. doi: 10.1111/jcpt.12818. |
[22] | Chan SL, Chua APG, Aminkeng F, et al. Association and clinical utility of NAT2 in the prediction of isoniazid-induced liver injury in Singaporean patients. PLoS One, 2017,12(10):e0186200. doi: 10.1371/journal.pone.0186200. |
[23] | Lu L, Tao B, Wei H, et al. Relevance of NAT2 genotype to anti-tuberculosis drug-induced hepatotoxicity in a Chinese Han population. J Gene Med, 2019,21(6):e3096. doi: 10.1002/jgm.3096. |
[24] | Guaoua S, Ratbi I, El Bouazzi O, et al. NAT2 Genotypes in Moroccan Patients with Hepatotoxicity Due to Antituberculosis Drugs. Genet Test Mol Biomarkers, 2016,20(11):680-684. doi: 10.1089/gtmb.2016.0060. |
[25] | Khan S, Mandal RK, Elasbali AM, et al. Pharmacogenetic association between NAT2 gene polymorphisms and isoniazid induced hepatotoxicity: trial sequence meta-analysis as evidence. Biosci Rep, 2019,39(1):BSR20180845. doi: 10.1042/BSR20180845. |
[26] | Zhang M, Wang S, Wilffert B, et al. The association between the NAT2 genetic polymorphisms and risk of DILI during anti-TB treatment: a systematic review and meta-analysis. Br J Clin Pharmacol, 2018,84(12):2747-2760. doi: 10.1111/bcp.13722. |
[27] | Li Y, Tang H, Qi H, et al. rs1800796 of the IL6 gene is associated with increased risk for anti-tuberculosis drug-induced hepatotoxicity in Chinese Han children. Tuberculosis (Edinb), 2018,111:71-77. doi: 10.1016/j.tube.2018.05.011. |
[28] | Chen R, Wang J, Tang SW, et al. CYP7A1, BAAT and UGT1A1 polymorphisms and susceptibility to anti-tuberculosis drug-induced hepatotoxicity. Int J Tuberc Lung Dis, 2016,20(6):812-818. doi: 10.5588/ijtld.15.0450. |
[29] | Benoit-Biancamano MO, Adam JP, Bernard O, et al. A pharmacogenetics study of the human glucuronosyltransferase UGT1A4. Pharmacogenet Genomics, 2009,19(12):945-954. doi: 10.1097/FPC.0b013e3283331637. |
[30] | Sun Q, Liu HP, Zheng RJ, et al. Genetic Polymorphisms of SLCO1B1, CYP2E1 and UGT1A1 and Susceptibility to Anti-Tuberculosis Drug-Induced Hepatotoxicity: A Chinese Population-Based Prospective Case-Control Study. Clin Drug Investig, 2017,37(12):1125-1136. doi: 10.1007/s40261-017-0572-6. |
[31] | Huang YS, Chern HD, Su WJ, et al. Cytochrome P450 2E1 genotype and the susceptibility to antituberculosis drug-induced hepatitis. Hepatology, 2003,37(4):924-930. doi: 10.1053/jhep.2003.50144. |
[32] | Zhou SF, Liu JP, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev, 2009,41(2):89-295. doi: 10.1080/03602530902843483. |
[33] | Bose PD, Sarma MP, Medhi S, et al. Role of polymorphic N-acetyl transferase2 and cytochrome P4502E1 gene in antituberculosis treatment-induced hepatitis. J Gastroenterol Hepatol, 2011,26(2):312-318. doi: 10.1111/j.1440-1746.2010.06355.x. |
[34] | Ji G, Huang W, He J. Is anti-tuberculosis drug-induced hepatotoxicity due to a change in pharmacokinetics caused by alterations in antioxidant gene expression and polymorphisms in the NFE2L2 gene? Int J Clin Pharmacol Ther, 2020,58(2):67-73. doi: 10.5414/CP202599. |
[35] | Zhao Z, Peng W, Wu L, et al. Correlation between lncRNA AC079767.4 variants and liver injury from antituberculosis treatment in West China. J Infect Chemother, 2020,26(1):63-68. doi: 10.1016/j.jiac.2019.07.003. |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||