Chinese Journal of Antituberculosis ›› 2020, Vol. 42 ›› Issue (8): 863-868.doi: 10.3969/j.issn.1000-6621.2020.08.016
• Review Articles • Previous Articles Next Articles
YANG Lu-qi, SHEN Ming-yi, SHA Wei, CHEN Ying-ying(), WANG Ying
Received:
2020-03-23
Online:
2020-08-10
Published:
2020-08-10
Contact:
CHEN Ying-ying
E-mail:yingying.chen@shsmu.edu.cn
YANG Lu-qi, SHEN Ming-yi, SHA Wei, CHEN Ying-ying, WANG Ying. Research progress in immunoprotective mechanism of bacille Calmette-Guérin and vaccine development strategies[J]. Chinese Journal of Antituberculosis, 2020, 42(8): 863-868. doi: 10.3969/j.issn.1000-6621.2020.08.016
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2020.08.016
[1] | World Health Organization. Global tuberculosis report 2019. Geneva:World Health Organization, 2019. |
[2] |
Houben RM, Dodd PJ. The Global Burden of Latent Tuberculosis Infection: A Re-estimation Using Mathematical Modelling. PLoS Med, 2016,13(10):e1002152. doi: 10.1371/journal.pmed.1002152.
doi: 10.1371/journal.pmed.1002152 URL pmid: 27780211 |
[3] |
World Health Organization. BCG vaccines: WHO positon paper-February 2018. Wkly Epidemiol Rec, 2018,93(8):73-96.
URL pmid: 29474026 |
[4] | World Health Organization. SAGE evidence to recommendations framework. Geneva:World Health Organization, 2017. |
[5] |
Nieuwenhuizen NE, Kaufmann SHE. Next-Generation Vaccines Based on Bacille Calmette-Guérin. Front Immunol, 2018,9:121. doi: 10.3389/fimmu.2018.00121.
doi: 10.3389/fimmu.2018.00121 URL pmid: 29459859 |
[6] | Ravenel MP. La Vaccination Préventive Contre la Tuberculose par le “BCG”. Am J Public Health Nations Health, 1928,18(8):1075. |
[7] | Chen ZR, Wei XH, Zhu ZY. BCG in China. Chin Med J (Engl), 1982,95(6):437-442. |
[8] |
Mangtani P, Abubakar I, Ariti C, et al. Protection by BCG vaccine against tuberculosis: a systematic review of randomized controlled trials. Clin Infect Dis, 2014,58(4):470-480. doi: 10.1093/cid/cit790.
doi: 10.1093/cid/cit790 URL |
[9] |
Aaby P, Kollmann TR, Benn CS. Nonspecific effects of neonatal and infant vaccination: public-health, immunological and conceptual challenges. Nat Immunol, 2014,15(10):895-899. doi: 10.1038/ni.2961.
doi: 10.1038/ni.2961 URL |
[10] |
Sugisaki K, Dannenberg AM Jr, Abe Y, et al. Nonspecific and immune-specific up-regulation of cytokines in rabbit dermal tuberculous (BCG) lesions. J Leukoc Biol, 1998,63(4):440-450. doi: 10.1002/jlb.63.4.440.
doi: 10.1002/jlb.63.4.440 URL pmid: 9544573 |
[11] |
Tsuji S, Matsumoto M, Takeuchi O, et al. Maturation of human dendritic cells by cell wall skeleton of Mycobacterium bovis bacillus Calmette-Guérin: involvement of toll-like receptors. Infect Immun, 2000,68(12):6883-6890. doi: 10.1128/iai.68.12.6883-6890.2000.
doi: 10.1128/iai.68.12.6883-6890.2000 URL pmid: 11083809 |
[12] |
Kleinnijenhuis J, Quintin J, Preijers F, et al. Bacille Calmette-Guérin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci U S A, 2012,109(43):17537-17542. doi: 10.1073/pnas.1202870109.
doi: 10.1073/pnas.1202870109 URL pmid: 22988082 |
[13] |
Turner J, Dockrell HM. Stimulation of human peripheral blood mononuclear cells with live Mycobacterium bovis BCG activates cytolytic CD8+ T cells in vitro. Immunology, 1996,87(3):339-342. doi: 10.1046/j.1365-2567.1996.512590.x.
doi: 10.1046/j.1365-2567.1996.512590.x URL pmid: 8778016 |
[14] |
Brown RM, Cruz O, Brennan M, et al. Lipoarabinomannan-reactive human secretory immunoglobulin A responses induced by mucosal bacille Calmette-Guérin vaccination. J Infect Dis, 2003,187(3):513-517. doi: 10.1086/368096.
URL pmid: 12552438 |
[15] |
Hamasur B, Haile M, Pawlowski A, et al. Mycobacterium tuberculosis arabinomannan-protein conjugates protect against tuberculosis. Vaccine, 2003,21(25/26):4081-4093. doi: 10.1016/s0264-410×(03)00274-3.
doi: 10.1016/S0264-410X(03)00274-3 URL |
[16] | World Health Organization. WHO preferred product characteristics for new tuberculosis vaccines. Geneva: World Health Organization, 2018. |
[17] |
Zhang L, Ru HW, Chen FZ, et al. Variable Virulence and Efficacy of BCG Vaccine Strains in Mice and Correlation with Genome Polymorphisms. Mol Ther, 2016,24(2):398-405. doi: 10.1038/mt.2015.216.
doi: 10.1038/mt.2015.216 URL pmid: 26643797 |
[18] |
Nguipdop-Djomo P, Heldal E, Rodrigues LC, et al. Duration of BCG protection against tuberculosis and change in effectiveness with time since vaccination in Norway: a retrospective population-based cohort study. Lancet Infect Dis, 2016,16(2):219-226. doi: 10.1016/S1473-3099(15)00400-4.
doi: 10.1016/S1473-3099(15)00400-4 URL pmid: 26603173 |
[19] |
Kirman JR, Henao-Tamayo MI, Agger EM. The Memory Immune Response to Tuberculosis. Microbiol Spectr, 2016,4(6). doi: 10.1128/microbiolspec.TBTB2-0009-2016.
doi: 10.1128/microbiolspec.MCHD-0050-2016 URL pmid: 28087931 |
[20] |
Orme IM. The Achilles heel of BCG. Tuberculosis (Edinb), 2010,90(6):329-332. doi: 10.1016/j.tube.2010.06.002.
doi: 10.1016/j.tube.2010.06.002 URL |
[21] |
Lindenstrøm T, Knudsen NP, Agger EM, et al. Control of chronic Mycobacterium tuberculosis infection by CD4 KLRG1-IL-2-secreting central memory cells. J Immunol, 2013,190(12):6311-6319. doi: 10.4049/jimmunol.1300248.
doi: 10.4049/jimmunol.1300248 URL pmid: 23677471 |
[22] |
Jurado JO, Alvarez IB, Pasquinelli V, et al. Programmed death (PD)-1:PD-ligand 1/PD-ligand 2 pathway inhibits T cell effector functions during human tuberculosis. J Immunol, 2008,181(1):116-125. doi: 10.4049/jimmunol.181.1.116.
doi: 10.4049/jimmunol.181.1.116 URL pmid: 18566376 |
[23] |
Cruz A, Torrado E, Carmona J, et al. BCG vaccination-induced long-lasting control of Mycobacterium tuberculosis correlates with the accumulation of a novel population of CD4+IL-17+TNF+IL-2+ T cells. Vaccine, 2015,33(1):85-91. doi: 10.1016/j.vaccine.2014.11.013.
doi: 10.1016/j.vaccine.2014.11.013 URL pmid: 25448107 |
[24] |
Connor LM, Harvie MC, Rich FJ, et al. A key role for lung-resident memory lymphocytes in protective immune responses after BCG vaccination. Eur J Immunol, 2010,40(9):2482-2492. doi: 10.1002/eji.200940279.
doi: 10.1002/eji.200940279 URL pmid: 20602436 |
[25] |
Kaveh DA, Garcia-Pelayo MC, Hogarth PJ. Persistent BCG bacilli perpetuate CD4 T effector memory and optimal protection against tuberculosis. Vaccine, 2014,32(51):6911-6918. doi: 10.1016/j.vaccine.2014.10.041.
doi: 10.1016/j.vaccine.2014.10.041 URL pmid: 25444816 |
[26] |
Minassian AM, Satti I, Poulton ID, et al. A human challenge model for Mycobacterium tuberculosis using Mycobacterium bovis bacille Calmette-Guerin. J Infect Dis, 2012,205(7):1035-1042. doi: 10.1093/infdis/jis012.
doi: 10.1093/infdis/jis012 URL |
[27] |
Darrah PA, Zeppa JJ, Maiello P, et al. Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature, 2020,577(7788):95-102. doi: 10.1038/s41586-019-1817-8.
doi: 10.1038/s41586-019-1817-8 URL pmid: 31894150 |
[28] |
Derrick SC, Kolibab K, Yang A, et al. Intranasal administration of Mycobacterium bovis BCG induces superior protection against aerosol infection with Mycobacterium tuberculosis in mice. Clin Vaccine Immunol, 2014,21(10):1443-1451. doi: 10.1128/CVI.00394-14.
doi: 10.1128/CVI.00394-14 URL |
[29] |
Manjaly Thomas ZR, McShane H. Aerosol immunisation for TB: matching route of vaccination to route of infection. Trans R Soc Trop Med Hyg, 2015,109(3):175-181. doi: 10.1093/trstmh/tru206.
doi: 10.1093/trstmh/tru206 URL pmid: 25636950 |
[30] |
Oxlade O, Murray M. Tuberculosis and poverty: why are the poor at greater risk in India? PLoS One, 2012,7(11):e47533. doi: 10.1371/joural.pone.0047533.
doi: 10.1371/journal.pone.0047533 URL pmid: 23185241 |
[31] |
Olmos P, Donoso J, Rojas N, et al. Tuberculosis and diabetes mellitus: a longitudinal-retrospective study in a teaching hospital. Rev Med Chil, 1989,117(9):979-983.
URL pmid: 2519480 |
[32] |
Zhu B, Dockrell HM, Ottenhoff THM, et al. Tuberculosis vaccines: Opportunities and challenges. Respirology, 2018,23(4):359-368. doi: 10.1111/resp.13245.
doi: 10.1111/resp.13245 URL pmid: 29341430 |
[33] |
Behr MA, Wilson MA, Gill WP, et al. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science, 1999,284(5419):1520-1523. doi: 10.1126/science.284.5419.1520.
doi: 10.1126/science.284.5419.1520 URL pmid: 10348738 |
[34] |
Brandt L, Elhay M, Rosenkrands I, et al. ESAT-6 subunit vaccination against Mycobacterium tuberculosis. Infect Immun, 2000,68(2):791-795. doi: 10.1128/iai.68.2.791-795.2000.
doi: 10.1128/iai.68.2.791-795.2000 URL pmid: 10639447 |
[35] |
Pym AS, Brodin P, Brosch R, et al. Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol Microbiol, 2002,46(3):709-717. doi: 10.1046/j.1365-2958.2002.03237.x.
doi: 10.1046/j.1365-2958.2002.03237.x URL pmid: 12410828 |
[36] |
Roche PW, Winter N, Triccas JA, et al. Expression of Mycobacterium tuberculosis MPT64 in recombinant Myco. smegmatis: purification, immunogenicity and application to skin tests for tuberculosis. Clin Exp Immunol, 1996,103(2):226-232. doi: 10.1046/j.1365-2249.1996.d01-613.x.
doi: 10.1046/j.1365-2249.1996.d01-613.x URL pmid: 8565304 |
[37] |
Dhar N, Rao V, Tyagi AK. Immunogenicity of recombinant BCG vaccine strains overexpressing components of the antigen 85 complex of Mycobacterium tuberculosis. Med Microbiol Immunol, 2004,193(1):19-25. doi: 10.1007/s00430-002-0170-x.
doi: 10.1007/s00430-002-0170-x URL pmid: 12905016 |
[38] |
Chen Y, Xiao JN, Li Y, et al. Mycobacterial Lipoprotein Z Triggers Efficient Innate and Adaptive Immunity for Protection Against Mycobacterium tuberculosis Infection. Front Immunol, 2019,9:3190. doi: 10.3389/fimmu.2018.03190.
doi: 10.3389/fimmu.2018.03190 URL pmid: 30700988 |
[39] |
Becker K, Sander P. Mycobacterium tuberculosis lipoproteins in virulence and immunity-fighting with a double-edged sword. FEBS Lett, 2016,590(21):3800-3819. doi: 10.1002/1873-3468.12273.
doi: 10.1002/1873-3468.12273 URL pmid: 27350117 |
[40] |
Clemens DL, Lee BY, Horwitz MA. Purification, characteri-zation, and genetic analysis of Mycobacterium tuberculosis urease, a potentially critical determinant of host-pathogen interaction. J Bacteriol, 1995,177(19):5644-5652. doi: 10.1128/jb.177.19.5644-5652.1995.
doi: 10.1128/jb.177.19.5644-5652.1995 URL pmid: 7559354 |
[41] |
Vogelzang A, Perdomo C, Zedler U, et al. Central memory CD4+ T cells are responsible for the recombinant Bacillus Calmette-Guérin ΔureC::hly vaccine’s superior protection against tuberculosis . J Infect Dis, 2014,210(12):1928-1937. doi: 10.1093/infdis/jiu347.
doi: 10.1093/infdis/jiu347 URL pmid: 24943726 |
[42] |
Grode L, Ganoza CA, Brohm C, et al. Safety and immunogenicity of the recombinant BCG vaccine VPM1002 in a phase 1 open-label randomized clinical trial. Vaccine, 2013,31(9):1340-1348. doi: 10.1016/j.vaccine.2012.12.053.
doi: 10.1016/j.vaccine.2012.12.053 URL pmid: 23290835 |
[43] |
Loxton AG, Knaul JK, Grode L, et al. Safety and Immunogenicity of the Recombinant Mycobacterium bovis BCG Vaccine VPM1002 in HIV-Unexposed Newborn Infants in South Africa. Clin Vaccine Immunol, 2017,24(2):e00439-16. doi: 10.1128/CVI.00439-16.
doi: 10.1128/CVI.00439-16 URL pmid: 27974398 |
[44] |
Sun R, Skeiky YA, Izzo A, et al. Novel recombinant BCG expressing perfringolysin O and the over-expression of key immunodominant antigens; pre-clinical characterization, safety and protection against challenge with Mycobacterium tuberculosis. Vaccine, 2009,27(33):4412-4423. doi: 10.1016/j.vaccine.2009.05.048.
doi: 10.1016/j.vaccine.2009.05.048 URL pmid: 19500523 |
[45] |
Hoft DF, Blazevic A, Selimovic A, et al. Safety and Immunogenicity of the Recombinant BCG Vaccine AERAS-422 in Healthy BCG-naïve Adults: A Randomized, Active-controlled, First-in-human Phase 1 Trial. EBioMedicine, 2016,7:278-286. doi: 10.1016/j.ebiom.2016.04.010.
doi: 10.1016/j.ebiom.2016.04.010 URL pmid: 27322481 |
[46] | 赵爱华, 徐苗, 王国治. 新一代抗结核分枝杆菌疫苗将会建立在现用卡介苗的基础上吗? 微生物与感染, 2017,12(4):206-210. doi: 10.3969/j.issn.1673-6184.2017.04.004. |
[47] |
卢锦标, 赵爱华, 王国治, 等. 对我国结核病免疫预防策略的探讨. 中国防痨杂志, 2014,36(11):927-929. doi: 10.3969/j.issn.1000-6621.2014.11.001.
doi: 10.3969/j.issn.1000-6621.2014.11.001 URL |
[48] | 卢锦标, 赵爱华, 王国治, 等. 结核病新疫苗临床研究进展. 中华结核和呼吸杂志, 2019,42(10):783-790. doi: 10.3760/cma.j.issm.1001-0939.2019.10.015. |
[49] |
Lerm M, Netea MG. Trained immunity: a new avenue for tuberculosis vaccine development. J Intern Med, 2016,279(4):337-346. doi: 10.1111/joim.12449.
doi: 10.1111/joim.12449 URL pmid: 26602369 |
[50] |
Madan M, Pahuja S, Mohan A, et al. TB infection and BCG vaccination: are we protected from COVID-19? Public health, 2020,185:91-92. doi: 10.1016/j.puhe.2020.05.042.
doi: 10.1016/j.puhe.2020.05.042 URL pmid: 32590235 |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||