Chinese Journal of Antituberculosis ›› 2020, Vol. 42 ›› Issue (6): 621-625.doi: 10.3969/j.issn.1000-6621.2020.06.015
• Review Articles • Previous Articles Next Articles
Received:
2020-04-21
Online:
2020-06-10
Published:
2020-06-11
Contact:
LU Xi-wei
E-mail:yiluxiwei@126.com
SONG Qi-sheng, LU Xi-wei. Progress and prospect of positron emission computed tomography applied in clinical research of pulmonary tuberculosis[J]. Chinese Journal of Antituberculosis, 2020, 42(6): 621-625. doi: 10.3969/j.issn.1000-6621.2020.06.015
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2020.06.015
[1] | 周新华 . 肺结核的影像学诊断——从形态分析到分子影像诊断. 中国防痨杂志, 2014,36(8):638-642. |
[2] | 王欣璐, 尹吉林, 张金赫 , 等. 60例活动性结核正电子发射体层摄影-CT误诊为恶性肿瘤的分析. 中华放射学杂志, 2013,47(1):34-38. |
[3] | 李妍, 张慧玲, 欧阳玲 . 女性盆腔结核与卵巢上皮癌的诊断与鉴别诊断. 结核病与肺部健康杂志, 2019,8(1):60-64. |
[4] | 侯代伦 . 重视影像学新技术在肺外结核诊断中的应用价值. 中国防痨杂志, 2020,42(1):4-7. |
[5] | 汪涛, 初向阳, 孙玉鹗 , 等. 18F-脱氧葡萄糖正电子发射体层显像检查在肺结核患者中的应用 . 中国胸心血管外科临床杂志, 2006,13(2):73-76. |
[6] | 伍建林, 王帅 . 现代医学影像技术在肺结核诊断中的应用价值与现状. 结核病与肺部健康杂志, 2012,1(1):60-62. |
[7] | Lin PL, Ford CB, Coleman MT , et al. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat Med, 2014,20(1):75-79. |
[8] | Via LE, Schimel D, Weiner DM , et al. Infection dynamics and response to chemotherapy in a rabbit model of tuberculosis using [ 18F]2-fluoro-deoxy-D-glucose positron emission tomography and computed tomography . Antimicrob Agents Chemother, 2012,56(8):4391-4402. |
[9] | Coleman MT, Maiello P, Tomko J , et al. Early Changes by 18Fluorodeoxyglucose positron emission tomography coregistered with computed tomography predict outcome after Mycobacterium tuberculosis infection in cynomolgus macaques . Infect Immun, 2014,82(6):2400-2404. |
[10] | Drain PK, Bajema KL, Dowdy D , et al. Incipient and subclinical tuberculosis: a clinical review of early stages and progression of infection. Clin Microbiol Rev, 2018, 31(4). pii:e00021-18. |
[11] | Ghesani N, Patrawalla A, Lardizabal A , et al. Increased cellular activity in thoracic lymph nodes in early human latent tuberculosis infection. Am J Respir Crit Care Med, 2014,189(6):748-750. |
[12] | Tramontana JM, Utaipat U, Molloy A , et al. Thalidomide treatment reduces tumor necrosis factor alpha production and enhances weight gain in patients with pulmonary tuberculosis. Mol Med, 1995,1(4):384-397. |
[13] | Barry CE 3rd, Boshoff HI, Dartois V , et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol, 2009,7(12):845-855. |
[14] | Dowdy DW, Basu S, Andrews JR . Is passive diagnosis enough? The impact of subclinical disease on diagnostic strategies for tuberculosis. Am J Respir Crit Care Med, 2013,187(5):543-551. |
[15] | Medlar EM . The pathogenesis of minimal pulmonary tuberculosis; a study of 1,225 necropsies in cases of sudden and unexpected death. Am Rev Tuberc, 1948,58(6):583-611. |
[16] | Ghesani N, Patrawalla A, Lardizabal A , et al. Increased cellular activity in thoracic lymph nodes in early human latent tuberculosis infection. Am J Respir Crit Care Med, 2014,189(6):748-750. |
[17] | Esmail H, Lai RP, Lesosky M , et al. Characterization of progressive HIV-associated tuberculosis using 2-deoxy-2-[ 18F]fluoro-D-glucose positron emission and computed tomography . Nat Med, 2016,22(10):1090-1093. |
[18] | Sánchez-Montalvá A, Barios M, Salvador F , et al. Usefulness of FDG PET/CT in the management of tuberculosis. PLoS One, 2019,14(8):e0221516. |
[19] | Hara T, Kosaka N, Suzuki T , et al. Uptake rates of 18F-fluorodeoxyglucose and 11C-cholinein lung cancer and pulmonary tuberculosis: a positron emission tomography study . Chest, 2003,124(3):893-901. |
[20] | Paik JY, Lee KH, Choe YS , et al. Augmented 18F-FDG uptake in activated monocytes occurs during the priming process and involves tyrosine kinases and protein kinase C . J Nucl Med, 2004,45(1):124-128. |
[21] | Deol P, Vohra R, Saini AK , et al. Role of Mycobacterium tuberculosis Ser/Thr kinase PknF: implications in glucose transport and cell division. J Bacteriol, 2005,187(10):3415-3420. |
[22] |
Nordin AJ, Rossetti C, Rahim NA . Disseminated tuberculosis infection: a ‘super’ 18F-FDG PET/CT appearance . Eur J Nucl Med Mol Imaging, 2009,36(5):882.
doi: 10.1007/s00259-009-1107-z URL |
[23] | Kim IJ, Lee JS, Kim SJ , et al. Double-phase 18F-FDG PET-CT for determination of pulmonary tuberculoma activity . Eur J Nucl Med Mol Imaging, 2008,35(4):808-814. |
[24] |
Jeong YJ, Paeng JC, Nam HY , et al. 18F-FDG positron-emission tomography/computed tomography findings of radiographic lesions suggesting old healed tuberculosis . J Korean Med Sci, 2014,29(3):386-391.
doi: 10.3346/jkms.2014.29.3.386 URL |
[25] | Steinbrück P, D$\check{a}$nkovã D, Edwards LB , et al. Tuberculosis risk in persons with “fibrotic” x-ray lesions. Bull Int Union Tuberc, 1972,47:135-159. |
[26] | Diel R, Loddenkemper R, Nienhaus A . Predictive value of interferon-γ release assays and tuberculin skin testing for progression from latent TB infection to disease state: a meta-analysis. Chest, 2012,142(1):63-75. |
[27] |
Ji Y, Shao C, Cui Y , et al. 18F-FDG Positron-Emission Tomography/Computed Tomography Findings of Radiographic Lesions Suggesting Old Healed Pulmonary Tuberculosis and High-risk Signs of Predicting Recurrence: A Retrospective Study . Sci Rep, 2019,9(1):12582.
doi: 10.1038/s41598-019-49057-5 URL |
[28] | Kouijzer IJE, Mulders-Manders CM, Bleeker-Rovers CP , et al. Fever of Unknown Origin: the Value of FDG-PET/CT. Semin Nucl Med, 2018,48(2):100-107. |
[29] | Seon HJ, Kim YI, Lim SC , et al. Clinical significance of residual lesions in chest computed tomography after anti-tuberculosis treatment. Int J Tuberc Lung Dis, 2014,18(3):341-346. |
[30] | Ralph AP, Ardian M, Wiguna A , et al. A simple, valid, numerical score for grading chest x-ray severity in adult smear-positive pulmonary tuberculosis. Thorax, 2010,65(10):863-869. |
[31] | Malherbe ST, Shenai S, Ronacher K , et al. Persisting positron emission tomography lesion activity and Mycobacterium tuberculosis mRNA after tuberculosis cure. Nat Med, 2016,22(10):1094-1100. |
[32] | Pasipanodya JG, McNabb SJ, Hilsenrath P , et al. Pulmonary impairment after tuberculosis and its contribution to TB burden. BMC Public Health, 2010,10:259. |
[33] |
Helsen N, Van den Wyngaert T, Carp L , et al. FDG-PET/CT for treatment response assessment in head and neck squamous cell carcinoma: a systematic review and meta-analysis of diagnostic performance. Eur J Nucl Med Mol Imaging, 2018,45(6):1063-1071.
doi: 10.1007/s00259-018-3978-3 URL |
[34] |
Martinez V, Castilla-Lievre MA, Guillet-Caruba C , et al. 18F-FDG PET/CT in tuberculosis: an early non-invasive marker of therapeutic response . Int J Tuberc Lung Dis, 2012,16(9):1180-1185.
doi: 10.5588/ijtld.12.0010 URL |
[35] | Dureja S, Sen IB, Acharya S . Potential role of F18 FDG PET-CT as an imaging biomarker for the noninvasive evaluation in uncomplicated skeletal tuberculosis: a prospective clinical observational study. Eur Spine J, 2014,23(11):2449-2454. |
[36] | Chen RY, Dodd LE, Lee M , et al. PET/CT imaging correlates with treatment outcome in patients with multidrug-resis-tant tuberculosis. Sci Transl Med, 2014, 6(265): 265ra166. |
[37] | Stelzmueller I, Huber H, Wunn R , et al. 18F-FDG PET/CT in the initial assessment and for follow-up in patients with tuberculosis . Clin Nucl Med, 2016,41(4):187-194. |
[38] | Tian G, Xiao Y, Chen B , et al. FDG PET/CT for therapeutic response monitoring in multi-site non-respiratory tuberculosis. Acta Radiol, 2010,51(9):1002-1006. |
[39] | Park IN, Ryu JS, Shim TS . Evaluation of therapeutic response of tuberculoma using F-18 FDG positron emission tomography. Clin Nucl Med, 2008,33(1):1-3. |
[40] | Hofmeyr A, Lau WF, Slavin MA . Mycobacterium tuberculosis infection in patients with cancer, the role of 18-fluorodeoxy-glucose positron emission tomography for diagnosis and monitoring treatment response. Tuberculosis (Edinb), 2007,87(5):459-463. |
[41] | Dooley KE, Lahlou O, Ghali I , et al. Risk factors for tuberculosis treatment failure, default, or relapse and outcomes of retreatment in Morocco. BMC Public Health, 2011,11:140. |
[42] | Panjabi R, Comstock GW, Golub JE . Recurrent tuberculosis and its risk factors: adequately treated patients are still at high risk. Int J Tuberc Lung Dis, 2007,11(8):828-837. |
[43] | Hesseling AC, Walzl G, Enarson DA , et al. Baseline sputum time to detection predicts month two culture conversion and relapse in non-HIV-infected patients. Int J Tuberc Lung Dis, 2010,14(5):560-570. |
[44] |
Demura Y, Tsuchida T, Uesaka D , et al. Usefulness of 18F-fluorodeoxyglucose positron emission tomography for diagnosing disease activity and monitoring therapeutic response in patients with pulmonary mycobacteriosis . Eur J Nucl Med Mol Imaging, 2009,36(4):632-639.
doi: 10.1007/s00259-008-1009-5 URL |
[45] |
Sathekge M, Maes A, Kgomo M , et al. Use of 18F-FDG PET to predict response to first-line tuberculostatics in HIV-associa-ted tuberculosis . J Nucl Med, 2011,52(6):880-885.
doi: 10.2967/jnumed.110.083709 URL |
[46] | Sathekge M, Maes A, D’Asseler Y , et al. Tuberculous lymphadenitis: FDG PET and CT findings in responsive and nonresponsive disease. Eur J Nucl Med Mol Imaging, 2012,39(7):1184-1190. |
[47] | Coleman MT, Chen RY, Lee M , et al. PET-CT imaging reveals a therapeutic response to oxazolidinones in macaques and humans with tuberculosis. Sci Transl Med, 2014, 6(265): 265ra167. |
[48] | World Health Organization. Treatment of tuberculosis guidelines. Geneva: World Health Organization, 2010: 84-85. |
[49] | Flick H, Rumetshofer R, Wurzinger G . Tuberkulose. Wien Klin Wochenschr Educ, 2012,7(1):234-241. |
[50] | Mittal S, Jain AK, Chakraborti KL , et al. Evaluation of healed status in tuberculosis of spine by fluorodeoxyglucose-positron emission tomography/computed tomography and contrast magnetic resonance imaging. Indian J Orthop, 2019,53(1):160-168. |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||