Chinese Journal of Antituberculosis ›› 2018, Vol. 40 ›› Issue (11): 1226-1230.doi: 10.3969/j.issn.1000-6621.2018.11.015
• Review Articles • Previous Articles Next Articles
WEI Jin-tao,LI Hua(),QIU En-ming.
Received:
2018-08-06
Online:
2018-11-10
Published:
2018-12-04
Contact:
Hua LI
E-mail:lih@fimmu.com
WEI Jin-tao,LI Hua,QIU En-ming.. Progress in metabolomics research on tuberculosis[J]. Chinese Journal of Antituberculosis, 2018, 40(11): 1226-1230. doi: 10.3969/j.issn.1000-6621.2018.11.015
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2018.11.015
[1] | World Health Organization . Global tuberculosis report 2018. Geneva: World Health Organization, 2018. |
[2] |
孙琳, 申阿东 . 代谢组学在结核病诊疗和病原学研究中的应用. 中国防痨杂志, 2016,38(3):175-179.
doi: 10.3969/j.issn.1000-6621.2016.03.004 |
[3] |
Houben RM, Dodd PJ . The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling. PLoS Med, 2016,13(10):e1002152.
doi: 10.1371/journal.pmed.1002152 URL pmid: 5079585 |
[4] |
Martin SJ, Sabina EP . Malnutrition and associated disorders in tuberculosis and its therapy. J Diet Suppl, 2018: 1-9. [Epub ahead of print].
doi: 10.1080/19390211.2018.1472165 URL |
[5] |
Parida SK, Kaufmann SH . The quest for biomarkers in tuberculosis. Drug Discov Today, 2010,15(3-4):148-157.
doi: 10.1016/j.drudis.2009.10.005 URL pmid: 19854295 |
[6] |
Patti GJ, Yanes O, Siuzdak G . Innovation: Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol, 2012,13(4):263-269.
doi: 10.1038/nrm3314 URL pmid: 22436749 |
[7] | 徐超, 任立红 . 代谢组学在白血病中的应用. 医学综述, 2018,24(7):1294-1298. |
[8] | 杨帆, 谢树红, 黄惠娟 . 卵巢癌在代谢组学中的研究进展. 东南国防医药, 2018,20(2):160-163. |
[9] | 王晓东, 何秉淑, 何慧欣 , 等. 代谢组学方法在糖尿病肾病研究中的应用. 中央民族大学学报(自然科学版), 2017,26(3):58-64. |
[10] | 王双双, 曾范利, 李东 , 等. 结核分枝杆菌毒力相关因子的研究进展. 中国兽医科学, 2018,48(6):750-755. |
[11] | Berney M, Berney-Meyer L . Mycobacterium tuberculosis in the Face of Host-Imposed Nutrient Limitation. Microbiol Spectr, 2017,5(3). |
[12] |
Puckett S, Trujillo C, Wang Z , et al. Glyoxylate detoxification is an essential function of malate synthase required for carbon assimilation in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A, 2017,114(11):E2225-2232.
doi: 10.1073/pnas.1617655114 URL pmid: 28265055 |
[13] |
Ganapathy U, Marrero J, Calhoun S , et al. Two enzymes with redundant fructose bisphosphatase activity sustain gluconeogenesis and virulence in Mycobacterium tuberculosis. Nat Commun, 2015,6:7912.
doi: 10.1038/ncomms8912 URL pmid: 26258286 |
[14] |
Zimmermann M, Kogadeeva M, Gengenbacher M , et al. Integration of Metabolomics and Transcriptomics Reveals a Complex Diet of Mycobacterium tuberculosis during Early Macrophage Infection. mSystems, 2017,2(4):e00057-17.
doi: 10.1128/mSystems.00057-17 URL pmid: 5566787 |
[15] |
孙铭艳, 伊正君, 付玉荣 . 结核病与铁代谢关系的研究进展. 中华结核和呼吸杂志, 2014,37(10):780-781.
doi: 10.3760/cma.j.issn.1001-0939.2014.10.020 URL |
[16] |
Kurthkoti K, Amin H, Marakalala MJ , et al. The Capacity of Mycobacterium tuberculosis To Survive Iron Starvation Might Enable It To Persist in Iron-Deprived Microenvironments of Human Granulomas. MBio, 2017,8(4):e01092-17.
doi: 10.1128/mBio.01092-17 URL pmid: 5559634 |
[17] |
李香社, 祝玉芬 . 我国结核分枝杆菌耐药现状及研究进展. 临床误诊误治, 2017,30(7):114-116.
doi: 10.3969/j.issn.1002-3429.2017.07.035 URL |
[18] |
Nandakumar M, Nathan C, Rhee KY . Isocitrate lyase media-tes broad antibiotic tolerance in Mycobacterium tuberculosis. Nat Commun, 2014,5:4306.
doi: 10.1038/ncomms5306 URL pmid: 24978671 |
[19] |
Larrouy-Maumus G, Marino LB, Madduri AV , et al. Cell-Envelope Remodeling as a Determinant of Phenotypic Antibacterial Tolerance in Mycobacterium tuberculosis. ACS Infect Dis, 2016,2(5):352-360.
doi: 10.1021/acsinfecdis.5b00148 URL pmid: 27231718 |
[20] |
Loots DT . New insights into the survival mechanisms of rifampicin-resistant Mycobacterium tuberculosis. J Antimicrob Chemother, 2016,71(3):655-660.
doi: 10.1093/jac/dkv406 URL pmid: 26679254 |
[21] |
Loots DT . An altered Mycobacterium tuberculosis metabolome induced by katG mutations resulting in isoniazid resistance. Antimicrob Agents Chemother, 2014,58(4):2144-2149.
doi: 10.1128/AAC.02344-13 URL pmid: 24468786 |
[22] | 罗少军 . PPD试验在结核病诊断中的重要性及临床意义分析. 世界最新医学信息文摘, 2017,17(100):41. |
[23] | 唐方能, 杨仁国, 耿晓霞 , 等. γ-干扰素释放试验诊断活动性结核病分析. 寄生虫病与感染性疾病, 2017,15(1):42-46. |
[24] | 胡彦, 陈娟娟, 王小中 . 结核分枝杆菌实验室诊断方法及评价. 实验与检验医学, 2016,34(2):177-179, 182. |
[25] |
刘欣欣, 张曼林, 汤兵祥 . T-SPOT. TB与传统结核诊断方法对比研究. 河南医学研究, 2017,26(4):602-603.
doi: 10.3969/j.issn.1004-437X.2017.04.010 URL |
[26] |
Isa F, Collins S, Lee MH , et al. Mass Spectrometric Identification of Urinary Biomarkers of Pulmonary Tuberculosis. E Bio Medicine, 2018,31:157-165.
doi: 10.1016/j.ebiom.2018.04.014 URL |
[27] |
Luier L, Loots DT . Tuberculosis metabolomics reveals adaptations of man and microbe in order to outcompete and survive. Metabolomics, 2016,12(3):1-9.
doi: 10.1007/s11306-015-0887-3 URL |
[28] |
Feng S, Du YQ, Zhang L , et al. Analysis of serum metabolic profile by ultra-performance liquid chromatography-mass spectrometry for biomarkers discovery: application in a pilot study to discriminate patients with tuberculosis. Chin Med J (Engl), 2015,128(2):159-168.
doi: 10.4103/0366-6999.149188 URL pmid: 25591556 |
[29] |
Sun L, Li JQ, Ren N , et al. Utility of Novel Plasma Metabolic Markers in the Diagnosis of Pediatric Tuberculosis: A Classification and Regression Tree Analysis Approach. J Proteome Res, 2016,15(9):3118-3125.
doi: 10.1021/acs.jproteome.6b00228 URL pmid: 27451809 |
[30] |
Kuntzel A, Oertel P, Fischer S , et al. Comparative analysis of volatile organic compounds for the classification and identification of mycobacterial species. PLoS One, 2018,13(3):e194348.
doi: 10.1371/journal.pone.0194348 URL pmid: 29558492 |
[31] |
Wang C, Peng J, Kuang Y , et al. Metabolomic analysis based on 1H-nuclear magnetic resonance spectroscopy metabolic profiles in tuberculous, malignant and transudative pleural effusion . Mol Med Rep, 2017,16(2):1147-1156.
doi: 10.3892/mmr.2017.6758 URL pmid: 28627685 |
[32] |
Che N, Ma Y, Ruan H , et al. Integrated semi-targeted metabolomics analysis reveals distinct metabolic dysregulation in pleural effusion caused by tuberculosis and malignancy. Clin Chim Acta, 2018,477:81-88.
doi: 10.1016/j.cca.2017.12.003 URL pmid: 29208371 |
[33] |
Li Z, Du B, Li J , et al. Cerebrospinal fluid metabolomic profiling in tuberculous and viral meningitis: Screening potential markers for differential diagnosis. Clin Chim Acta, 2017,466:38-45.
doi: 10.1016/j.cca.2017.01.002 URL pmid: 28063937 |
[34] |
Mason S, Reinecke CJ, Solomons R . Cerebrospinal Fluid Amino Acid Profiling of Pediatric Cases with Tuberculous Meningitis. Front Neurosci, 2017,11:534.
doi: 10.3389/fnins.2017.00534 URL pmid: 5623012 |
[35] |
Rawat A, Chaturvedi S, Singh AK , et al. Metabolomics approach discriminates toxicity index of pyrazinamide and its metabolic products, pyrazinoic acid and 5-hydroxy pyrazinoic acid. Hum Exp Toxicol, 2017,37(4):373-389.
doi: 10.1177/0960327117705426 URL pmid: 28425350 |
[36] |
Cao J, Mi Y, Shi C , et al. First-line anti-tuberculosis drugs induce hepatotoxicity: A novel mechanism based on a urinary metabolomics platform. Biochemical Biophys Res Commun, 2018,497(2):485-491.
doi: 10.1016/j.bbrc.2018.02.030 URL |
[37] | 曹俊 . 运用尿液代谢组学对抗结核药物肝毒性机制的研究. 苏州:苏州大学, 2017. |
[38] |
Ruan LY, Fan JT, Hong W , et al. Isoniazid-induced hepatotoxicity and neurotoxicity in rats investigated by 1H NMR based metabolomics approach . Toxicol Lett, 2018,295:256-269.
doi: 10.1016/j.toxlet.2018.05.032 URL |
[39] |
Li F, Wang P, Liu K , et al. A High Dose of Isoniazid Disturbs Endobiotic Homeostasis in Mouse Liver. Drug Metab Dispos, 2016,44(11):1742-1751.
doi: 10.1124/dmd.116.070920 URL pmid: 27531952 |
[40] |
Awasthi D, Freundlich JS . Antimycobacterial Metabolism: Illuminating Mycobacterium tuberculosis Biology and Drug Discovery. Trends Microbiol, 2017,25(9):756-767.
doi: 10.1016/j.tim.2017.05.007 URL pmid: 28622844 |
[41] |
Song L, Gao D, Li S , et al. Simultaneous quantitation of hydrazine and acetylhydrazine in human plasma by high performance liquid chromatography-tandem mass spectrometry after derivatization with p-tolualdehyde. J Chromatogr B Analyt Technol Biomed Life Sci, 2017,1063:189-195.
doi: 10.1016/j.jchromb.2017.08.036 URL pmid: 28881295 |
[42] |
Koen N, van Breda SV, Loots DT . Metabolomics of colistin methanesulfonate treated Mycobacterium tuberculosis. Tuberculosis (Edinb), 2018,111:154-160.
doi: 10.1016/j.tube.2018.06.008 URL |
[43] |
Koen N, van Breda SV, Loots DT . Elucidating the antimicrobial mechanisms of colistin sulfate on Mycobacterium tuberculosis using metabolomics. Tuberculosis (Edinb), 2018,111:14-19.
doi: 10.1016/j.tube.2018.05.001 URL pmid: 30029899 |
[44] |
Baptista R, Fazakerley DM, Beckmann M , et al. Untargeted metabolomics reveals a new mode of action of pretomanid (PA-824). Sci Rep, 2018,8(1):5084.
doi: 10.1038/s41598-018-23110-1 URL pmid: 29572459 |
[45] |
Marshall DD, Halouska S, Zinniel DK , et al. Assessment of Metabolic Changes in Mycobacterium smegmatis Wild-Type and alr Mutant Strains: Evidence of a New Pathway of d-Alanine Biosynthesis. J Proteome Res, 2017,16(3):1270-1279.
doi: 10.1021/acs.jproteome.6b00871 URL |
[46] |
Prosser GA, Rodenburg A, Khoury H , et al. Glutamate Racemase Is the Primary Target of beta-Chloro-d-Alanine in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2016,60(10):6091-6099.
doi: 10.1128/AAC.01249-16 URL |
[47] |
Zampieri M, Szappanos B, Buchieri MV , et al. High-throughput metabolomic analysis predicts mode of action of uncharacterized antimicrobial compounds. Sci Transl Med, 2018, 10(429): pii: eaal3973.
doi: 10.1126/scitranslmed.aal3973 URL |
[48] |
Das MK, Bishwal SC, Das A , et al. Deregulated tyrosine-phenylalanine metabolism in pulmonary tuberculosis patients. J Proteome Res, 2015,14(4):1947-1956.
doi: 10.1021/acs.jproteome.5b00016 URL pmid: 25693719 |
[49] |
Luies L, Reenen MV, Ronacher K , et al. Predicting tuberculosis treatment outcome using metabolomics. Biomark Med, 2017,11(12):1057-1067.
doi: 10.2217/bmm-2017-0133 URL pmid: 29172670 |
[50] |
Zetola NM, Modongo C, Matsiri O , et al. Diagnosis of pulmonary tuberculosis and assessment of treatment response through analyses of volatile compound patterns in exhaled breath samples. J Infect, 2017,74(4):367-376.
doi: 10.1016/j.jinf.2016.12.006 URL pmid: 28017825 |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||