Chinese Journal of Antituberculosis ›› 2023, Vol. 45 ›› Issue (11): 1097-1102.doi: 10.19982/j.issn.1000-6621.20230266
• Review Articles • Previous Articles Next Articles
Nan Yue, Long Meizhen, Dong Yuhui, Wang Yuanzhi, Zhou Xiangmei()
Received:
2023-08-03
Online:
2023-11-10
Published:
2023-11-03
Contact:
Zhou Xiangmei, Email: Supported by:
CLC Number:
Nan Yue, Long Meizhen, Dong Yuhui, Wang Yuanzhi, Zhou Xiangmei. Research progress on macrophage glucose metabolism reprogramming in Mycobacterium tuberculosis infection[J]. Chinese Journal of Antituberculosis, 2023, 45(11): 1097-1102. doi: 10.19982/j.issn.1000-6621.20230266
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20230266
[1] | Ahmad F, Rani A, Alam A, et al. Macrophage: A Cell With Many Faces and Functions in Tuberculosis. Front Immunol, 2022, 13: 747799. doi:10.3389/fimmu.2022.747799. |
[2] | Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature, 2013, 496(7446): 445-455. doi:10.1038/nature12034. |
[3] | Arish M, Naz F. Macrophage plasticity as a therapeutic target in tuberculosis. Eur J Immunol, 2022, 52(5): 696-704. doi:10.1002/eji.202149624. |
[4] |
Orecchioni M, Ghosheh Y, Pramod AB, et al. Corrigendum: Macrophage Polarization: Different Gene Signatures in M1(LPS+) vs. Classically and M2(LPS-) vs. Alternatively Activated Macrophages. Front Immunol, 2020, 11: 234. doi:10.3389/fimmu.2020.00234.
pmid: 32161587 |
[5] |
Muri J, Kopf M. Redox regulation of immunometabolism. Nat Rev Immunol, 2021, 21(6): 363-381. doi:10.1038/s41577-020-00478-8.
pmid: 33340021 |
[6] |
Makowski L, Chaib M, Rathmell JC. Immunometabolism: From basic mechanisms to translation. Immunol Rev, 2020, 295(1): 5-14. doi:10.1111/imr.12858.
pmid: 32320073 |
[7] |
Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol, 2011, 27: 441-464. doi:10.1146/annurev-cellbio-092910-154237.
pmid: 21985671 |
[8] |
Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol, 1927, 8(6): 519-530. doi:10.1085/jgp.8.6.519.
pmid: 19872213 |
[9] |
Mills CD, Kincaid K, Alt JM, et al. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol, 2000, 164(12): 6166-6173. doi:10.4049/jimmunol.164.12.6166.
pmid: 10843666 |
[10] |
Kelly B, O’Neill LA. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res, 2015, 25(7): 771-784. doi:10.1038/cr.2015.68.
pmid: 26045163 |
[11] |
Van den Bossche J, O’Neill LA, Menon D. Macrophage Immunometabolism: Where Are We (Going)?. Trends Immunol, 2017, 38(6): 395-406. doi:10.1016/j.it.2017.03.001.
pmid: 28396078 |
[12] |
El Kasmi KC, Stenmark KR. Contribution of metabolic reprogramming to macrophage plasticity and function. Semin Immunol, 2015, 27(4): 267-275. doi:10.1016/j.smim.2015.09.001.
pmid: 26454572 |
[13] |
Palsson-Mcdermott EM, Curtis AM, Goel G, et al. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages. Cell Metab, 2015, 21(1): 65-80. doi:10.1016/j.cmet.2014.12.005.
pmid: 25565206 |
[14] |
Xie M, Yu Y, Kang R, et al. PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation. Nat Commun, 2016, 7: 13280. doi:10.1038/ncomms13280.
pmid: 27779186 |
[15] |
Millet P, Vachharajani V, McPhail L, et al. GAPDH Binding to TNF-α mRNA Contributes to Posttranscriptional Repression in Monocytes: A Novel Mechanism of Communication between Inflammation and Metabolism. J Immunol, 2016, 196(6): 2541-2551. doi:10.4049/jimmunol.1501345.
pmid: 26843329 |
[16] |
Bae S, Kim H, Lee N, et al. α-Enolase expressed on the surfaces of monocytes and macrophages induces robust synovial inflammation in rheumatoid arthritis. J Immunol, 2012, 189(1): 365-372. doi:10.4049/jimmunol.1102073.
pmid: 22623332 |
[17] |
Meiser J, Krämer L, Sapcariu SC, et al. Pro-inflammatory Macrophages Sustain Pyruvate Oxidation through Pyruvate Dehydrogenase for the Synthesis of Itaconate and to Enable Cytokine Expression. J Biol Chem, 2016, 291(8): 3932-3946. doi:10.1074/jbc.M115.676817.
pmid: 26679997 |
[18] |
Board M, Humm S, Newsholme EA. Maximum activities of key enzymes of glycolysis, glutaminolysis, pentose phosphate pathway and tricarboxylic acid cycle in normal, neoplastic and suppressed cells. Biochem J, 1990, 265(2): 503-509. doi:10.1042/bj2650503.
pmid: 2302181 |
[19] |
Haschemi A, Kosma P, Gille L, et al. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab, 2012, 15(6): 813-826. doi:10.1016/j.cmet.2012.04.023.
pmid: 22682222 |
[20] | Michelucci A, Cordes T, Ghelfi J, et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc Natl Acad Sci U S A, 2013, 110(19): 7820-7825. doi:10.1073/pnas.1218599110. |
[21] | Tannahill GM, Curtis AM, Adamik J, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature, 2013, 496(7444): 238-242. doi:10.1038/nature11986. |
[22] |
Mcfadden BA, Purohit S. Itaconate, an isocitrate lyase-directed inhibitor in Pseudomonas indigofera. J Bacteriol, 1977, 131(1): 136-144. doi:10.1128/jb.131.1.136-144.1977.
pmid: 17593 |
[23] | Littlewood-Evans A, Sarret S, Apfel V, et al. GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis. J Exp Med, 2016, 213(9): 1655-1662. doi:10.1084/jem.20160061. |
[24] | Yunna C, Mengru H, Lei W, et al. Macrophage M1/M2 polarization. Eur J Pharmacol, 2020, 877: 173090. doi:10.1016/j.ejphar.2020.173090. |
[25] |
Rodríguez-Prados JC, Través PG, Cuenca J, et al. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol, 2010, 185(1): 605-614. doi:10.4049/jimmunol.0901698.
pmid: 20498354 |
[26] | Mehrotra P, Jamwal SV, Saquib N, et al. Pathogenicity of Mycobacterium tuberculosis is expressed by regulating metabolic thresholds of the host macrophage. PLoS Pathog, 2014, 10(7): e1004265. doi:10.1371/journal.ppat.1004265. |
[27] |
Gleeson LE, Sheedy FJ, Palsson-McDermott EM, et al. Cutting Edge: Mycobacterium tuberculosis Induces Aerobic Glycolysis in Human Alveolar Macrophages That Is Required for Control of Intracellular Bacillary Replication. J Immunol, 2016, 196(6): 2444-2449. doi:10.4049/jimmunol.1501612.
pmid: 26873991 |
[28] |
Everts B, Amiel E, Huang SC, et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKε supports the anabolic demands of dendritic cell activation. Nat Immunol, 2014, 15(4): 323-332. doi:10.1038/ni.2833.
pmid: 24562310 |
[29] | Moon JS, Hisata S, Park MA, et al. mTORC1-Induced HK1-Dependent Glycolysis Regulates NLRP 3 Inflammasome Activation. Cell Rep, 2015, 12(1): 102-115. doi:10.1016/j.celrep.2015.05.046. |
[30] | Shi L, Jiang Q, Bushkin Y, et al. Biphasic Dynamics of Macrophage Immunometabolism during Mycobacterium tuberculosis Infection. mBio, 2019, 10(2): e02550-18. doi:10.1128/mBio.02550-18. |
[31] |
Nizet V, Johnson RS. Interdependence of hypoxic and innate immune responses. Nat Rev Immunol, 2009, 9(9): 609-617. doi:10.1038/nri2607.
pmid: 19704417 |
[32] | Sugden MC, Holness MJ. Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs. Am J Physiol Endocrinol Metab, 2003, 284(5): E855-E862. doi:10.1152/ajpendo.00526.2002. |
[33] |
Rider MH, Bertrand L, Vertommen D, et al. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis. Biochem J, 2004, 381(Pt 3): 561-579. doi:10.1042/BJ20040752.
pmid: 15170386 |
[34] | Kang DD, Lin Y, Moreno JR, et al. Profiling early lung immune responses in the mouse model of tuberculosis. PLoS One, 2011, 6(1): e16161. doi:10.1371/journal.pone.0016161. |
[35] |
Koivunen P, Hirsilä M, Remes AM, et al. Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF. J Biol Chem, 2007, 282(7): 4524-4532. doi:10.1074/jbc.M610415200.
pmid: 17182618 |
[36] |
Cardoso MS, Silva TM, Resende M, et al. Lack of the Transcription Factor Hypoxia-Inducible Factor 1α (HIF-1α) in Macrophages Accelerates the Necrosis of Mycobacterium avium-Induced Granulomas. Infect Immun, 2015, 83(9): 3534-3544. doi:10.1128/IAI.00144-15.
pmid: 26099585 |
[37] | Evans WH, Karnovsky ML. The biochemical basis of phagocytosis. Ⅳ. Some aspects of carbohydrate metabolism during phagocytosis. Biochemistry, 1962, 1: 159-166. doi:10.1021/bi00907a024. |
[38] | Rohde KH, Veiga DF, Caldwell S, et al. Linking the transcriptional profiles and the physiological states of Mycobacterium tuberculosis during an extended intracellular infection. PLoS Pathog, 2012, 8(6): e1002769. doi:10.1371/journal.ppat.1002769. |
[39] |
Jha AK, Huang SC, Sergushichev A, et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity, 2015, 42(3): 419-430. doi:10.1016/j.immuni.2015.02.005.
pmid: 25786174 |
[40] |
Byles V, Covarrubias AJ, Ben-Sahra I, et al. The TSC-mTOR pathway regulates macrophage polarization. Nat Commun, 2013, 4: 2834. doi:10.1038/ncomms3834.
pmid: 24280772 |
[41] | Takeda N, O’Dea EL, Doedens A, et al. Differential activation and antagonistic function of HIF-α isoforms in macrophages are essential for NO homeostasis. Genes Dev, 2010, 24(5): 491-501. doi:10.1101/gad.1881410. |
[42] |
Lachmandas E, Beigier-Bompadre M, Cheng SC, et al. Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells. Eur J Immunol, 2016, 46(11): 2574-2586. doi:10.1002/eji.201546259.
pmid: 27624090 |
[43] | Kim JS, Kim YR, Yang CS. Host-Directed Therapy in Tuberculosis: Targeting Host Metabolism. Front Immunol, 2020, 11: 1790. doi:10.3389/fimmu.2020.01790. |
[44] | Cumming BM, Pacl HT, Steyn AJC. Relevance of the Warburg Effect in Tuberculosis for Host-Directed Therapy. Front Cell Infect Microbiol, 2020, 10: 576596. doi:10.3389/fcimb.2020.576596. |
[45] |
Young C, Walzl G, Du Plessis N. Therapeutic host-directed strategies to improve outcome in tuberculosis. Mucosal Immunol, 2020, 13(2): 190-204. doi:10.1038/s41385-019-0226-5.
pmid: 31772320 |
[46] | Rao M, Ippolito G, Mfinanga S, et al. Improving treatment outcomes for MDR-TB-Novel host-directed therapies and personalised medicine of the future. Int J Infect Dis, 2019, 80S: S62-S67. doi:10.1016/j.ijid.2019.01.039. |
[47] | Jiang Q, Qiu Y, Kurland I J, et al. Glutamine Is Required for M1-like Polarization of Macrophages in Response to Mycobacterium tuberculosis Infection. mBio, 2022, 13(4): e0127422. doi:10.1128/mbio.01274-22. |
[48] | Cumming BM, Addicott KW, Adamson JH, et al. Mycobacterium tuberculosis induces decelerated bioenergetic metabolism in human macrophages. Elife, 2018, 7: e39169. doi:10.7554/eLife.39169. |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[4] | Zhang Peize, Gao Qian, Deng Guofang. [18F]FDT-PET-CT technology that may bring revolutionary changes to tuberculosis clinical research [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 262-265. |
[5] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[6] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[7] | You Chengdong, Zhu Ling, Li Peibo. Research progress on serum trace elements in the development and nutritional support of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 218-223. |
[8] | Fu Ying, Xiong Yangyang, Fang Si, Li Chuanxiang, Guo Hongrong. The research progress on the relationship between serum albumin and its derivative biomarkers and chronic obstructive pulmonary disease [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 231-236. |
[9] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[10] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[11] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[12] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
[13] | Palidanguli Abudureheman, Wang Senlu, Gulina Badeerhan, Wang Le, Zulikatiayi Abudula, Wang Xinqi, Maiwulajiang Yimamu, Wang Xijiang. Distribution of Mycobacterium tuberculosis genotypes in Kashgar region and their association with clinical characteristics of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1077-1082. |
[14] | Li Wenhan, Yang Jing, Li Chunhua. Research progress of artificial intelligence in pulmonary tuberculosis imaging diagnosis and drug resistance prediction [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1098-1103. |
[15] | Xu Chunhua, Zhu Shiyu, Hu Yi, Yi Kehua, Song Canlei, Wang Zichun, Wu Yong, Wang Qing, Yang Qianru, Shen Xin. Analysis of screening effect of recombinant Mycobacterium tuberculosis fusion protein in screening Mycobacterium tuberculosis infection in close contacts of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 897-902. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||