Chinese Journal of Antituberculosis ›› 2023, Vol. 45 ›› Issue (2): 208-214.doi: 10.19982/j.issn.1000-6621.20220481
• Review Articles • Previous Articles Next Articles
Qu Yunmo, Ding Xinyuan, Yan Meiyi, Guo Xiaopeng, Sun Yicheng()
Received:
2022-12-01
Online:
2023-02-10
Published:
2023-02-01
Contact:
Sun Yicheng
E-mail:sunyc@ipbcams.ac.cn
Supported by:
CLC Number:
Qu Yunmo, Ding Xinyuan, Yan Meiyi, Guo Xiaopeng, Sun Yicheng. Development and application of CRISPR assisted genome editing technology in Mycobacterium tuberculosis[J]. Chinese Journal of Antituberculosis, 2023, 45(2): 208-214. doi: 10.19982/j.issn.1000-6621.20220481
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20220481
编辑类型 | Cas种类 | 应用细菌 | 优点 | 缺点 |
---|---|---|---|---|
CRISPR辅助的同源重组基因组编辑 | CRISPR-Cas12a CRISPR-Cas9 | 耻垢分枝杆菌 | 提高细菌重组效率,不依赖抗性基因筛选突变菌株 | 目前无法应用于结核分枝杆菌 |
CRISPR辅助的非同源末端连接基因组编辑 | CRISPR-Cas12a | 耻垢分枝杆菌 海分枝杆菌 | 快捷、高效,可应用于其他分枝杆菌的基因组编辑 | 无法应用于结核分枝杆菌 |
CRISPR-Cas9sth1 | 结核分枝杆菌 耻垢分枝杆菌 海分枝杆菌 | 快捷、高效,可应用于其他分枝杆菌的基因组编辑 | 只能用于基因敲除,无法实现基因点突变 | |
CRISPR辅助的单碱基编辑技术 | CRISPR-nCas9sth1 | 耻垢分枝杆菌 结核分枝杆菌 | 实现对分枝杆菌靶基因的点突变,可应用于其他分枝杆菌 | 只能用于特定位点的基因突变 |
CRISPRi调控的基因表达 | CRISPR-dCas9spy | 耻垢分枝杆菌 结核分枝杆菌 | 设计简单,易于改造,可应用于其他分枝杆菌 | 抑制基因表达的能力较弱,蛋白毒性大 |
CRISPR-dCas9sth1 | 耻垢分枝杆菌 结核分枝杆菌 | 简单高效,高度抑制基因表达,且蛋白毒性小,有利于必需基因的研究。可应用于其他分枝杆菌 | CRISPRi文库筛选对于下游基因具有极性效应 |
[1] |
Husson RN, James BE, Young RA. Gene replacement and expression of foreign DNA in mycobacteria. J Bacteriol, 1990, 172(2): 519-524. doi:10.1128/jb.172.2.519-524.1990.
doi: 10.1128/jb.172.2.519-524.1990 pmid: 2153655 |
[2] |
Parish T, Stoker NG. Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement. Microbiology (Reading), 2000, 146 (Pt 8): 1969-1975. doi:10.1099/00221287-146-8-1969.
doi: 10.1099/00221287-146-8-1969 URL |
[3] |
Bardarov S, Bardarov S, Pavelka MS, et al. Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M.bovis BCG and M.smegmatis. Microbiology (Reading), 2002, 148(Pt 10): 3007-3017. doi:10.1099/00221287-148-10-3007.
doi: 10.1099/00221287-148-10-3007 URL |
[4] |
Brouns SJ, Jore MM, Lundgren M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 2008, 321(5891): 960-964. doi:10.1126/science.1159689.
doi: 10.1126/science.1159689 pmid: 18703739 |
[5] |
Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816-821. doi:10.1126/science.1225829.
doi: 10.1126/science.1225829 pmid: 22745249 |
[6] |
Chhotaray C, Tan Y, Mugweru J, et al. Advances in the development of molecular genetic tools for Mycobacterium tuberculosis. J Genet Genomics, 2018: S1673-8527(18)30114-0. doi:10.1016/j.jgg.2018.06.003.
doi: 10.1016/j.jgg.2018.06.003 |
[7] |
van Kessel JC, Hatfull GF. Recombineering in Mycobacterium tuberculosis. Nat Methods, 2007, 4(2): 147-152. doi:10.1038/nmeth996.
doi: 10.1038/nmeth996 pmid: 17179933 |
[8] |
Yan MY, Yan HQ, Ren GX, et al. CRISPR-Cas12a-Assisted Recombineering in Bacteria. Appl Environ Microbiol, 2017, 83(17): e00947-17. doi:10.1128/AEM.00947-17.
doi: 10.1128/AEM.00947-17 |
[9] |
Shuman S, Glickman MS. Bacterial DNA repair by non-homologous end joining. Nat Rev Microbiol, 2007, 5(11): 852-861. doi:10.1038/nrmicro1768.
doi: 10.1038/nrmicro1768 pmid: 17938628 |
[10] |
Selle K, Barrangou R. Harnessing CRISPR-Cas systems for bacterial genome editing. Trends Microbiol, 2015, 23(4): 225-232. doi:10.1016/j.tim.2015.01.008.
doi: 10.1016/j.tim.2015.01.008 pmid: 25698413 |
[11] |
Sun B, Yang J, Yang S, et al. A CRISPR-Cpf1-Assisted Non-Homologous End Joining Genome Editing System of Mycobacterium smegmatis. Biotechnol J, 2018, 13(9): e1700588. doi:10.1002/biot.201700588.
doi: 10.1002/biot.201700588 |
[12] |
Yan MY, Li SS, Ding XY, et al. A CRISPR-Assisted Nonhomologous End-Joining Strategy for Efficient Genome Editing in Mycobacterium tuberculosis. mBio, 2020, 11(1): e02364-19. doi:10.1128/mBio.02364-19.
doi: 10.1128/mBio.02364-19 |
[13] |
Stephanou NC, Gao F, Bongiorno P, et al. Mycobacterial nonhomologous end joining mediates mutagenic repair of chromosomal double-strand DNA breaks. J Bacteriol, 2007, 189(14): 5237-5246. doi:10.1128/JB.00332-07.
doi: 10.1128/JB.00332-07 pmid: 17496093 |
[14] |
Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016, 533(7603): 420-424. doi:10.1038/nature17946.
doi: 10.1038/nature17946 URL |
[15] |
Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature, 2017, 551(7681): 464-471. doi:10.1038/nature24644.
doi: 10.1038/nature24644 URL |
[16] |
Komor AC, Zhao KT, Packer MS, et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci Adv, 2017, 3(8): eaao4774. doi:10.1126/sciadv.aao4774.
doi: 10.1126/sciadv.aao4774 URL |
[17] |
Ding XY, Li SS, Geng YM, et al. Programmable Base Editing in Mycobacterium tuberculosis Using an Engineered CRISPR RNA-Guided Cytidine Deaminase. Front Genome Ed, 2021, 3: 734436. doi:10.3389/fgeed.2021.734436.
doi: 10.3389/fgeed.2021.734436 URL |
[18] |
Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 2021, 184(3): 844. doi:10.1016/j.cell.2021.01.019.
doi: 10.1016/j.cell.2021.01.019 pmid: 33545038 |
[19] |
Bosch B, DeJesus MA, Poulton NC, et al. Genome-wide gene expression tuning reveals diverse vulnerabilities of M.tuberculosis. Cell, 2021, 184(17): 4579-4592.e24. doi:10.1016/j.cell.2021.06.033.
doi: 10.1016/j.cell.2021.06.033 URL |
[20] |
Choudhary E, Thakur P, Pareek M, et al. Gene silencing by CRISPR interference in mycobacteria. Nat Commun, 2015, 6: 6267. doi:10.1038/ncomms7267.
doi: 10.1038/ncomms7267 pmid: 25711368 |
[21] |
Singh AK, Carette X, Potluri LP, et al. Investigating essential gene function in Mycobacterium tuberculosis using an efficient CRISPR interference system. Nucleic Acids Res, 2016, 44(18): e143. doi:10.1093/nar/gkw625.
doi: 10.1093/nar/gkw625 URL |
[22] |
Rock JM, Hopkins FF, Chavez A, et al. Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform. Nat Microbiol, 2017, 2: 16274. doi:10.1038/nmicrobiol.2016.274.
doi: 10.1038/nmicrobiol.2016.274 pmid: 28165460 |
[23] |
McNeil MB, Ryburn HW, Tirados J, et al. Multiplexed transcriptional repression identifies a network of bactericidal interactions between mycobacterial respiratory complexes. iScience, 2021, 25(1): 103573. doi:10.1016/j.isci.2021.103573.
doi: 10.1016/j.isci.2021.103573 URL |
[24] |
Adolph C, McNeil MB, Cook GM. Impaired Succinate Oxidation Prevents Growth and Influences Drug Susceptibility in Mycobacterium tuberculosis. mBio, 2022, 13(4): e0167222. doi:10.1128/mbio.01672-22.
doi: 10.1128/mbio.01672-22 URL |
[25] |
Xiao J, Jia H, Pan L, et al. Application of the CRISPRi system to repress sepF expression in Mycobacterium smegmatis. Infect Genet Evol, 2019, 72: 183-190. doi:10.1016/j.meegid.2018.06.033.
doi: S1567-1348(18)30469-6 pmid: 31242975 |
[26] |
Babunovic GH, DeJesus MA, Bosch B, et al. CRISPR Interference Reveals That All-Trans-Retinoic Agcid Promotes Macrophage Control of Mycobacterium tuberculosis by Limiting Bacterial Access to Cholesterol and Propionyl Coenzyme A. mBio, 2022, 13(1): e0368321. doi:10.1128/mbio.03683-21.
doi: 10.1128/mbio.03683-21 URL |
[27] |
McNeil MB, Cook GM. Utilization of CRISPR Interference To Validate MmpL3 as a Drug Target in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2019, 63(8): e00629-19. doi:10.1128/AAC.00629-19.
doi: 10.1128/AAC.00629-19 |
[28] |
Li S, Poulton NC, Chang JS, et al. CRISPRi chemical genetics and comparative genomics identify genes mediating drug potency in Mycobacterium tuberculosis. Nat Microbiol, 2022, 7(6): 766-779. doi:10.1038/s41564-022-01130-y.
doi: 10.1038/s41564-022-01130-y URL |
[29] |
Poulton NC, Azadian ZA, DeJesus MA, et al. Mutations in rv0678 Confer Low-Level Resistance to Benzothiazinone DprE 1 Inhibitors in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2022, 66(9): e0090422. doi:10.1128/aac.00904-22.
doi: 10.1128/aac.00904-22 |
[30] |
Yan MY, Zheng D, Li SS, et al. Application of combined CRISPR screening for genetic and chemical-genetic interaction profiling in Mycobacterium tuberculosis. Sci Adv, 2022, 8(47): eadd5907. doi:10.1126/sciadv.add5907.
doi: 10.1126/sciadv.add5907 URL |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[4] | Zhang Peize, Gao Qian, Deng Guofang. [18F]FDT-PET-CT technology that may bring revolutionary changes to tuberculosis clinical research [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 262-265. |
[5] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[6] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[7] | You Chengdong, Zhu Ling, Li Peibo. Research progress on serum trace elements in the development and nutritional support of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 218-223. |
[8] | Fu Ying, Xiong Yangyang, Fang Si, Li Chuanxiang, Guo Hongrong. The research progress on the relationship between serum albumin and its derivative biomarkers and chronic obstructive pulmonary disease [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 231-236. |
[9] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[10] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[11] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[12] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
[13] | Palidanguli Abudureheman, Wang Senlu, Gulina Badeerhan, Wang Le, Zulikatiayi Abudula, Wang Xinqi, Maiwulajiang Yimamu, Wang Xijiang. Distribution of Mycobacterium tuberculosis genotypes in Kashgar region and their association with clinical characteristics of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1077-1082. |
[14] | Li Wenhan, Yang Jing, Li Chunhua. Research progress of artificial intelligence in pulmonary tuberculosis imaging diagnosis and drug resistance prediction [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1098-1103. |
[15] | Xu Chunhua, Zhu Shiyu, Hu Yi, Yi Kehua, Song Canlei, Wang Zichun, Wu Yong, Wang Qing, Yang Qianru, Shen Xin. Analysis of screening effect of recombinant Mycobacterium tuberculosis fusion protein in screening Mycobacterium tuberculosis infection in close contacts of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 897-902. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||