Chinese Journal of Antituberculosis ›› 2023, Vol. 45 ›› Issue (2): 134-138.doi: 10.19982/j.issn.1000-6621.20220421
• Interpretation of Standards • Previous Articles Next Articles
Received:
2022-11-11
Online:
2023-02-10
Published:
2023-02-01
Contact:
Wu Xueqiong
E-mail:xueqiongwu@139.com
Supported by:
CLC Number:
Xue Yong, Wu Xueqiong. Interpretation of immune function status assessment in Expert consensus on immune function assessment and immunotherapy in patients with active tuberculosis (2021 edition)[J]. Chinese Journal of Antituberculosis, 2023, 45(2): 134-138. doi: 10.19982/j.issn.1000-6621.20220421
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20220421
[1] |
中国人民解放军总医院第八医学中心全军结核病研究所/全军结核病防治重点实验室/结核病诊疗新技术北京市重点实验室, 《中国防痨杂志》编辑委员会, 中国医疗保健国际交流促进会结核病防治分会基础和临床学部. 活动性结核病患者免疫功能状态评估和免疫治疗专家共识(2021年版). 中国防痨杂志, 2022, 44(1): 9-27. doi:10.19982/j.issn.1000-6621.20210680.
doi: 10.19982/j.issn.1000-6621.20210680 |
[2] |
Nakao M, Muramatsu H, Arakawa S, et al. Immunonutritional status and pulmonary cavitation in patient with tuberculosis: A revisit with an assessment of neutrophil/lymphocyte ratio. Respir Investig, 2019, 57(1): 60-66. doi:10.1016/j.resinv.2018.08.007.
doi: 10.1016/j.resinv.2018.08.007 URL |
[3] |
Jeon YL, Lee WI, Kang SY, et al. Neutrophil-to-Monocyte-Plus-Lymphocyte Ratio as a Potential Marker for Discriminating Pulmonary Tuberculosis from Nontuberculosis Infectious Lung Diseases. Lab Med, 2019, 50(3): 286-291. doi:10.1093/labmed/lmy083.
doi: 10.1093/labmed/lmy083 pmid: 30753566 |
[4] |
《中国防痨杂志》编辑委员会, 中国医疗保健国际交流促进会结核病防治分会基础专业和临床专业学术部. 结核病患者外周血淋巴细胞亚群检测及临床应用专家共识. 中国防痨杂志, 2020, 42(10): 1009-1016. doi:10.3969/j.issn.1000-6621.2020.10.001.
doi: 10.3969/j.issn.1000-6621.2020.10.001 |
[5] |
Hally KE, Ferrer-Font L, Pilkington KR, et al. OMIP 083: A 21-marker 18-color flow cytometry panel for in-depth phenotyping of human peripheral monocytes. Cytometry A, 2022, 101(5): 374-379. doi:10.1002/cyto.a.24545.
doi: 10.1002/cyto.a.24545 URL |
[6] |
Castaño D, García LF, Rojas M. Increased frequency and cell death of CD16+ monocytes with Mycobacterium tuberculosis infection. Tuberculosis (Edinb), 2011, 91(5): 348-360. doi:10.1016/j.tube.2011.04.002.
doi: 10.1016/j.tube.2011.04.002 URL |
[7] | 曹雪涛, 姚智, 熊思东, 等. 医学免疫学. 7版. 北京: 人民卫生出版社, 2018: 109-118. |
[8] |
Estévez O, Anibarro L, Garet E, et al. Multi-parameter flow cytometry immunophenotyping distinguishes different stages of tuberculosis infection. J Infect, 2020, 81(1): 57-71. doi:10.1016/j.jinf.2020.03.064.
doi: S0163-4453(20)30218-8 pmid: 32330526 |
[9] | Ndishimye P, Zakham F, Musanabaganwa C, et al. CD4+ regulatory T cells and CD4+ activated T cells in new active and relapse tuberculosis. Cell Mol Biol (Noisy-le-grand), 2019, 65(8): 18-22. |
[10] |
Qin S, Chen R, Jiang YJ, et al. Multifunctional T cell response in active pulmonary tuberculosis patients. Int Immunopharmacol, 2021, 99: 107898. doi:10.1016/j.intimp.2021.107898.
doi: 10.1016/j.intimp.2021.107898 URL |
[11] |
Okada R, Kondo T, Matsuki F, et al. Phenotypic classification of human CD4+ T cell subsets and their differentiation. Int Immunol, 2008, 20(9): 1189-1199. doi:10.1093/intimm/dxn075.
doi: 10.1093/intimm/dxn075 pmid: 18635582 |
[12] |
Harari A, Dutoit V, Cellerai C, et al. Functional signatures of protective antiviral T-cell immunity in human virus infections. Immunol Rev, 2006, 211: 236-254. doi:10.1111/j.0105-2896.2006.00395.x.
doi: 10.1111/j.0105-2896.2006.00395.x pmid: 16824132 |
[13] |
Priyanto H, Chua E, Hutchinson P, et al. A decrease in PPD specific CD4 T cell CD38 and HLA-DR expression in pulmonary tuberculosis patients after 8 weeks of therapy correlates with successful anti-tuberculosis treatment. J Clin Tuberc Other Mycobact Dis, 2021, 22: 100214. doi:10.1016/j.jctube.2021.100214.
doi: 10.1016/j.jctube.2021.100214 |
[14] |
Luo Y, Xue Y, Mao L, et al. Activation Phenotype of Mycobacterium tuberculosis-Specific CD4+ T Cells Promoting the Discrimination Between Active Tuberculosis and Latent Tuberculosis Infection. Front Immunol, 2021, 12: 721013. doi:10.3389/fimmu.2021.721013.
doi: 10.3389/fimmu.2021.721013 URL |
[15] |
Adekambi T, Ibegbu CC, Cagle S, et al. Biomarkers on patient T cells diagnose active tuberculosis and monitor treatment response. J Clin Invest, 2015, 125(5): 1827-1838. doi:10.1172/JCI77990.
doi: 10.1172/JCI77990 pmid: 25822019 |
[16] |
Luo Y, Xue Y, Tang GX, et al. Lymphocyte-Related Immunological Indicators for Stratifying Mycobacterium tuberculosis Infection. Front Immunol, 2021, 12: 658843. doi:10.3389/fimmu.2021.658843.
doi: 10.3389/fimmu.2021.658843 URL |
[17] |
Kiran B, Cagatay T, Clark P, et al. Can immune parameters be used as predictors to distinguish between pulmonary multidrug-resistant and drug-sensitive tuberculosis? Arch Med Sci, 2010, 6(1): 77-82. doi:10.5114/aoms.2010.13511.
doi: 10.5114/aoms.2010.13511 pmid: 22371724 |
[18] |
Bernal-Fernandez G, Espinosa-Cueto P, Leyva-Meza R, et al. Decreased expression of T-cell costimulatory molecule CD 28 on CD4 and CD8 T cells of mexican patients with pulmonary tuberculosis. Tuberc Res Treat, 2010, 2010: 517547. doi:10.1155/2010/517547.
doi: 10.1155/2010/517547 |
[19] |
Vickers MA, Darboe F, Muefong CN, et al. Monitoring Anti-tuberculosis Treatment Response Using Analysis of Whole Blood Mycobacterium tuberculosis Specific T Cell Activation and Functional Markers. Front Immunol, 2020, 11: 572620. doi:10.3389/fimmu.2020.572620.
doi: 10.3389/fimmu.2020.572620 URL |
[20] |
Wang X, Liang KD, Zhang JA, et al. Increased B cell activating factor is associated with B cell class switching in patients with tuberculous pleural effusion. Mol Med Rep, 2018, 18(2): 1704-1709. doi:10.3892/mmr.2018.9073.
doi: 10.3892/mmr.2018.9073 pmid: 29845274 |
[21] |
Morais-Papini TF, Coelho-Dos-Reis JGA, Wendling APB, et al. Systemic Immunological changes in patients with distinct clinical outcomes during Mycobacterium tuberculosis infection. Immunobiology, 2017, 222(11): 1014-1024. doi:10.1016/j.imbio.2017.05.016.
doi: S0171-2985(17)30099-2 pmid: 28619539 |
[22] |
Jean Bosco M, Wei M, Hou H, et al. The exhausted CD4+CXCR5+ T cells involve the pathogenesis of human tuberculosis disease. Int J Infect Dis, 2018, 74: 1-9. doi:10.1016/j.ijid.2018.06.011.
doi: 10.1016/j.ijid.2018.06.011 URL |
[23] |
An HR, Bai XJ, Liang JQ, et al. The relationship between absolute counts of lymphocyte subsets and clinical features in patients with pulmonary tuberculosis. Clin Respir J, 2022, 16(5): 369-379. doi:10.1111/crj.13490.
doi: 10.1111/crj.13490 URL |
[24] |
Gao XF, Yang ZW, Li J. Adjunctive therapy with interferon-gamma for the treatment of pulmonary tuberculosis: a syste-matic review. Int J Infect Dis, 2011, 15(9): e594-e600. doi:10.1016/j.ijid.2011.05.002.
doi: 10.1016/j.ijid.2011.05.002 |
[25] |
Seneviratne SL, Doffinger R, Macfarlane J, et al. Disseminated Mycobacterium tuberculosis infection due to interferon gamma deficiency. Response to replacement therapy. Thorax, 2007, 62(1): 97-99. doi:10.1136/thx.2005.051649.
doi: 10.1136/thx.2005.051649 pmid: 17189534 |
[26] |
Zhang R, Xi X, Wang C, et al. Therapeutic effects of recombinant human interleukin 2 as adjunctive immunotherapy against tuberculosis: A systematic review and meta-analysis. PLoS One, 2018, 13(7): e0201025. doi:10.1371/journal.pone.0201025.
doi: 10.1371/journal.pone.0201025 |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||