Chinese Journal of Antituberculosis ›› 2023, Vol. 45 ›› Issue (1): 116-122.doi: 10.19982/j.issn.1000-6621.20220292
• Review Article • Previous Articles
Shang Yuanyuan1, Nie Wenjuan1, Huang Hairong2, Chu Naihui1()
Received:
2022-08-03
Online:
2023-01-10
Published:
2022-12-30
Contact:
Chu Naihui
E-mail:dongchu1994@sina.com
Supported by:
CLC Number:
Shang Yuanyuan, Nie Wenjuan, Huang Hairong, Chu Naihui. Research status of drug resistance of antituberculosis drugs bedaquiline and clofazimine[J]. Chinese Journal of Antituberculosis, 2023, 45(1): 116-122. doi: 10.19982/j.issn.1000-6621.20220292
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20220292
药物 | 基因 | 突变基因 |
---|---|---|
贝达喹啉 | atpE | A63P[ |
氯法齐明 | Rv1979c | V351A[ |
氯法齐明 | Rv1453 | res-sacB-hyg-res基因座缺失[ |
贝达喹啉与氯法齐明 | Rv0678 | S53L[ |
贝达喹啉与氯法齐明 | Rv2535c | c158t[ |
[1] | World Health Organization.Global tuberculosis report 2020. Geneva: Word Health Organization, 2020. |
[2] | World Health Organization. Global tuberculosis report 2021. Geneva: Word Health Organization, 2021. |
[3] | World Health Organization. WHO consolidated guidelines on drug-resistant tuberculosis treatment. Geneva: World Health Organization, 2019. |
[4] |
Nimmo C, Millard J, van Dorp L, et al. Population-level emergence of bedaquiline and clofazimine resistance-associated variants among patients with drug-resistant tuberculosis in southern Africa: a phenotypic and phylogenetic analysis. Lancet Microbe, 2020, 1(4): e165-e174. doi:10.1016/S2666-5247(20)30031-8.
doi: 10.1016/S2666-5247(20)30031-8. |
[5] |
Williams K, Minkowski A, Amoabeng O, et al. Sterilizing activities of novel combinations lacking first- and second-line drugs in a murine model of tuberculosis. Antimicrob Agents Chemother, 2012, 56(6): 3114-3120. doi:10.1128/AAC.00384-12.2.
doi: 10.1128/AAC.00384-12 pmid: 22470112 |
[6] |
Nunn AJ, Phillips PPJ, Meredith SK, et al. A Trial of a Shorter Regimen for Rifampin-Resistant Tuberculosis. N Engl J Med, 2019, 380(13): 1201-1213. doi:10.1056/NEJMoa1811867.
doi: 10.1056/NEJMoa1811867. URL |
[7] |
Koul A, Dendouga N, Vergauwen K, et al. Diarylquinolines target subunit c of mycobacterial ATP synthase. Nat Chem Biol, 2007, 3(6): 323-324. doi:10.1038/nchembio884.
doi: 10.1038/nchembio884. pmid: 17496888 |
[8] |
Preiss L, Langer JD, Yildiz Ö, et al. Structure of the mycobacterial ATP synthase Fo rotor ring in complex with the anti-TB drug bedaquiline. Sci Adv, 2015, 1(4): e1500106. doi:10.1126/sciadv.1500106.
doi: 10.1126/sciadv.1500106. URL |
[9] |
Borisov SE, Dheda K, Enwerem M, et al. Effectiveness and safety of bedaquiline-containing regimens in the treatment of MDR- and XDR-TB: a multicentre study. Eur Respir J, 2017, 49(5):1700387. doi:10.1183/13993003.00387-2017.
doi: 10.1183/13993003.00387-2017. URL |
[10] |
Schnippel K, Ndjeka N, Maartens G, et al. Effect of bedaquiline on mortality in South African patients with drug-resistant tuberculosis: a retrospective cohort study. Lancet Respir Med, 2018, 6(9): 699-706. doi:10.1016/S2213-2600(18)30235-2.
doi: 10.1016/S2213-2600(18)30235-2 pmid: 30001994 |
[11] |
Honeyborne I, Lipman M, Zumla A, et al. The changing treatment landscape for MDR/XDR-TB-Can current clinical trials revolutionise and inform a brave new world? Int J Infect Dis, 2019, 80S: S23-S28. doi:10.1016/j.ijid.2019.02.006.
doi: 10.1016/j.ijid.2019.02.006. |
[12] |
Akkerman O, Aleksa A, Alffenaar JW, et al. Surveillance of adverse events in the treatment of drug-resistant tuberculosis: A global feasibility study. Int J Infect Dis, 2019, 83: 72-76. doi:10.1016/j.ijid.2019.03.036.
doi: S1201-9712(19)30165-1 pmid: 30953827 |
[13] |
Van Deun A, Maug AK, Salim MA, et al. Short, highly effective, and inexpensive standardized treatment of multidrug-resistant tuberculosis. Am J Respir Crit Care Med, 2010, 182(5): 684-692. doi:10.1164/rccm.201001-0077OC.
doi: 10.1164/rccm.201001-0077OC. URL |
[14] |
Duan H, Chen X, Li Z, et al. Clofazimine improves clinical outcomes in multidrug-resistant tuberculosis: a randomized controlled trial. Clin Microbiol Infect, 2019, 25(2): 190-195. doi:10.1016/j.cmi.2018.07.012.
doi: 10.1016/j.cmi.2018.07.012. |
[15] |
Tang S, Yao L, Hao X, et al. Clofazimine for the treatment of multidrug-resistant tuberculosis: prospective, multicenter, randomized controlled study in China. Clin Infect Dis, 2015, 60(9): 1361-1367. doi:10.1093/cid/civ027.
doi: 10.1093/cid/civ027 pmid: 25605283 |
[16] |
Lamprecht DA, Finin PM, Rahman MA, et al. Turning the respiratory flexibility of Mycobacterium tuberculosis against itself. Nat Commun, 2016, 7: 12393. doi:10.1038/ncomms12393.
doi: 10.1038/ncomms12393 pmid: 27506290 |
[17] |
Yano T, Kassovska-Bratinova S, Teh JS, et al. Reduction of clofazimine by mycobacterial type 2 NADH:quinone oxidoreductase: a pathway for the generation of bactericidal levels of reactive oxygen species. J Biol Chem, 2011, 286(12): 10276-10287. doi:10.1074/jbc.M110.200501.
doi: 10.1074/jbc.M110.200501 pmid: 21193400 |
[18] |
Mirnejad R, Asadi A, Khoshnood S, et al. Clofazimine: A useful antibiotic for drug-resistant tuberculosis. Biomed Pharmacother, 2018, 105: 1353-1359. doi:10.1016/j.biopha.2018.06.023.
doi: S0753-3322(18)32560-5 pmid: 30021373 |
[19] |
Zhang S, Chen J, Cui P, et al. Identification of novel mutations associated with clofazimine resistance in Mycobacterium tuberculosis. J Antimicrob Chemother, 2015, 70(9): 2507-2510. doi:10.1093/jac/dkv150.
doi: 10.1093/jac/dkv150 pmid: 26045528 |
[20] |
Zheng H, He W, Jiao W, et al. Molecular characterization of multidrug-resistant tuberculosis against levofloxacin, moxifloxacin, bedaquiline, linezolid, clofazimine, and delamanid in southwest of China. BMC Infect Dis, 2021, 21(1): 330. doi:10.1186/s12879-021-06024-8.
doi: 10.1186/s12879-021-06024-8 pmid: 33832459 |
[21] |
Andries K, Verhasselt P, Guillemont J, et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science, 2005, 307(5707): 223-227. doi:10.1126/science.1106753.
doi: 10.1126/science.1106753. pmid: 15591164 |
[22] |
Huitric E, Verhasselt P, Koul A, et al. Rates and mechanisms of resistance development in Mycobacterium tuberculosis to a novel diarylquinoline ATP synthase inhibitor. Antimicrob Agents Chemother, 2010, 54(3): 1022-1028. doi:10.1128/AAC.01611-09.
doi: 10.1128/AAC.01611-09 pmid: 20038615 |
[23] |
Liu Y, Gao J, Du J, et al. Acquisition of clofazimine resis-tance following bedaquiline treatment for multidrug-resistant tuberculosis. Int J Infect Dis, 2021, 102: 392-396. doi:10.1016/j.ijid.2020.10.081.
doi: 10.1016/j.ijid.2020.10.081. URL |
[24] |
Xu J, Wang B, Hu M, et al. Primary Clofazimine and Beda-quiline Resistance among Isolates from Patients with Multidrug-Resistant Tuberculosis. Antimicrob Agents Chemother, 2017, 61(6): e00239-17. doi:10.1128/AAC.00239-17.
doi: 10.1128/AAC.00239-17. |
[25] |
Ismail NA, Omar SV, Joseph L, et al. Defining Bedaquiline Susceptibility, Resistance, Cross-Resistance and Associated Genetic Determinants: A Retrospective Cohort Study. EBioMedicine, 2018, 28: 136-142. doi:10.1016/j.ebiom.2018.01.005.
doi: S2352-3964(18)30005-7 pmid: 29337135 |
[26] |
Zimenkov DV, Nosova EY, Kulagina EV, et al. Examination of bedaquiline- and linezolid-resistant Mycobacterium tuberculosis isolates from the Moscow region. J Antimicrob Chemother, 2017, 72(7): 1901-1906. doi:10.1093/jac/dkx094.
doi: 10.1093/jac/dkx094 pmid: 28387862 |
[27] |
Migliori GB, Falzon D, Marks GB, et al. Commemorating World Tuberculosis Day 2022: recent ERJ articles of critical relevance to ending TB and saving lives. Eur Respir J, 2022, 59(3): 2200149. doi:10.1183/13993003.00149-2022.
doi: 10.1183/13993003.00149-2022. URL |
[28] |
Centers for Disease Control and Prevention. Provisional CDC guidelines for the use and safety monitoring of bedaquiline fumarate (Sirturo) for the treatment of multidrug-resistant tuberculosis. MMWR Recomm Rep, 2013, 62(RR-09): 1-12.
pmid: 24157696 |
[29] |
Diacon AH, Pym A, Grobusch MP, et al. Multidrug-resistant tuberculosis and culture conversion with bedaquiline. N Engl J Med, 2014, 371(8): 723-732. doi:10.1056/NEJMoa1313865.
doi: 10.1056/NEJMoa1313865. URL |
[30] |
Pontali E, Sotgiu G, D’Ambrosio L, et al. Bedaquiline and multidrug-resistant tuberculosis: a systematic and critical analysis of the evidence. Eur Respir J, 2016, 47(2): 394-402. doi:10.1183/13993003.01891-2015.
doi: 10.1183/13993003.01891-2015 pmid: 26828052 |
[31] |
Ghodousi A, Rizvi AH, Baloch AQ, et al. Acquisition of Cross-Resistance to Bedaquiline and Clofazimine following Treatment for Tuberculosis in Pakistan. Antimicrob Agents Chemother, 2019, 63(9): e00915-19. doi:10.1128/AAC.00915-19.
doi: 10.1128/AAC.00915-19. |
[32] |
Hartkoorn RC, Uplekar S, Cole ST. Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2014, 58(5): 2979-2981. doi:10.1128/AAC.00037-14.
doi: 10.1128/AAC.00037-14 pmid: 24590481 |
[33] |
Almeida D, Ioerger T, Tyagi S, et al. Mutations in pepQ Confer Low-Level Resistance to Bedaquiline and Clofazimine in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2016, 60(8): 4590-4599. doi:10.1128/AAC.00753-16.
doi: 10.1128/AAC.00753-16 pmid: 27185800 |
[34] |
Loeb LA, Wallace DC, Martin GM. The mitochondrial theory of aging and its relationship to reactive oxygen species damage and somatic mtDNA mutations. Proc Natl Acad Sci U S A, 2005, 102(52): 18769-18770. doi:10.1073/pnas.0509776102.
doi: 10.1073/pnas.0509776102. pmid: 16365283 |
[35] |
Van Rie A, Warren R, Richardson M, et al. Classification of drug-resistant tuberculosis in an epidemic area. Lancet, 2000, 356(9223): 22-25. doi:10.1016/S0140-6736(00)02429-6.
doi: 10.1016/S0140-6736(00)02429-6. pmid: 10892760 |
[36] |
Field SK. Bedaquiline for the treatment of multidrug-resistant tuberculosis: great promise or disappointment? Ther Adv Chronic Dis, 2015, 6(4):170-184. doi:10.1177/2040622315582325.
doi: 10.1177/2040622315582325 pmid: 26137207 |
[37] |
Petrella S, Cambau E, Chauffour A, et al. Genetic basis for natural and acquired resistance to the diarylquinoline R207910 in mycobacteria. Antimicrob Agents Chemother, 2006, 50(8): 2853-2856. doi:10.1128/AAC.00244-06.
doi: 10.1128/AAC.00244-06. pmid: 16870785 |
[38] |
Ismail N, Rivière E, Limberis J, et al. Genetic variants and their association with phenotypic resistance to bedaquiline in Mycobacterium tuberculosis: a systematic review and individual isolate data analysis. Lancet Microbe, 2021, 2(11): e604-e616.doi:10.1016/s2666-5247(21)00175-0.
doi: 10.1016/s2666-5247(21)00175-0. |
[39] |
Pang Y, Zong Z, Huo F, et al. In Vitro Drug Susceptibility of Bedaquiline, Delamanid, Linezolid, Clofazimine, Moxifloxacin, and Gatifloxacin against Extensively Drug-Resistant Tuberculosis in Beijing, China. Antimicrob Agents Chemother, 2017, 61(10): e00900-17. doi:10.1128/AAC.00900-17.
doi: 10.1128/AAC.00900-17. |
[40] |
Phelan J, Coll F, McNerney R, et al. Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance. BMC Med, 2016, 14: 31. doi:10.1186/s12916-016-0575-9.
doi: 10.1186/s12916-016-0575-9 pmid: 27005572 |
[41] |
Li Y, Fu L, Zhang W, et al. The Transcription Factor Rv1453 Regulates the Expression of qor and Confers Resistant to Clofazimine in Mycobacterium tuberculosis. Infect Drug Resist, 2021, 14: 3937-3948. doi:10.2147/IDR.S324043.
doi: 10.2147/IDR.S324043. URL |
[42] |
Ismail NA, Omar SV, Moultrie H, et al. Assessment of epidemiological and genetic characteristics and clinical outcomes of resistance to bedaquiline in patients treated for rifampicin-resistant tuberculosis: a cross-sectional and longitudinal study. Lancet Infect Dis, 2022, 22(4): 496-506. doi:10.1016/S1473-3099(21)00470-9.
doi: 10.1016/S1473-3099(21)00470-9. URL |
[43] |
Milano A, Pasca MR, Provvedi R, et al. Azole resistance in Mycobacterium tuberculosis is mediated by the MmpS5-MmpL 5 efflux system. Tuberculosis (Edinb), 2009, 89(1): 84-90. doi:10.1016/j.tube.2008.08.003.
doi: 10.1016/j.tube.2008.08.003. URL |
[44] |
Wells RM, Jones CM, Xi Z, et al. Discovery of a siderophore export system essential for virulence of Mycobacterium tuberculosis. PLoS Pathog, 2013, 9(1): e1003120. doi:10.1371/journal.ppat.1003120.
doi: 10.1371/journal.ppat.1003120. |
[45] |
Fang Z, Sampson SL, Warren RM, et al. Iron acquisition strategies in mycobacteria. Tuberculosis (Edinb), 2015, 95(2): 123-130. doi:10.1016/j.tube.2015.01.004.
doi: 10.1016/j.tube.2015.01.004. URL |
[46] |
Villellas C, Coeck N, Meehan CJ, et al. Unexpected high prevalence of resistance-associated Rv0678 variants in MDR-TB patients without documented prior use of clofazimine or bedaqui-line. J Antimicrob Chemother, 2017, 72(3): 684-690. doi:10.1093/jac/dkw502.
doi: 10.1093/jac/dkw502 pmid: 28031270 |
[47] |
Andries K, Villellas C, Coeck N, et al. Acquired resistance of Mycobacterium tuberculosis to bedaquiline. PLoS One, 2014, 9(7): e102135. doi:10.1371/journal.pone.0102135.
doi: 10.1371/journal.pone.0102135. |
[48] |
Gupta S, Tyagi S, Bishai WR. Verapamil increases the bactericidal activity of bedaquiline against Mycobacterium tuberculosis in a mouse model. Antimicrob Agents Chemother, 2015, 59(1): 673-676. doi:10.1128/AAC.04019-14.
doi: 10.1128/AAC.04019-14. URL |
[49] |
Kadura S, King N, Nakhoul M, et al. Systematic review of mutations associated with resistance to the new and repurposed Mycobacterium tuberculosis drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid. J Antimicrob Chemother, 2020, 75(8): 2031-2043. doi:10.1093/jac/dkaa136.
doi: 10.1093/jac/dkaa136 pmid: 32361756 |
[50] |
D’Ambrosio L, Tadolini M, Dupasquier S, et al. ERS/WHO tuberculosis consilium: reporting of the initial 10 cases. Eur Respir J, 2014, 43(1): 286-289. doi:10.1183/09031936.00125813.
doi: 10.1183/09031936.00125813 pmid: 24072213 |
[51] |
Ioerger TR, Feng Y, Chen X, et al. The non-clonality of drug resistance in Beijing-genotype isolates of Mycobacterium tuberculosis from the Western Cape of South Africa. BMC Geno-mics, 2010, 11: 670. doi:10.1186/1471-2164-11-670.
doi: 10.1186/1471-2164-11-670. |
[52] |
Richard M, Gutiérrez AV, Viljoen A, et al. Mutations in the MAB_2299c TetR Regulator Confer Cross-Resistance to Clofazimine and Bedaquiline in Mycobacterium abscessus. Antimicrob Agents Chemother, 2019, 63(1): e01316-18. doi:10.1128/AAC.01316-18.
doi: 10.1128/AAC.01316-18. |
[53] |
Alexander DC, Vasireddy R, Vasireddy S, et al. Emergence of mmpT 5 Variants during Bedaquiline Treatment of Mycobacterium intracellulare Lung Disease. J Clin Microbiol, 2017, 55(2): 574-584. doi:10.1128/JCM.02087-16.
doi: 10.1128/JCM.02087-16 pmid: 27927925 |
[54] |
Bloemberg GV, Keller PM, Stucki D, et al. Acquired Resis-tance to Bedaquiline and Delamanid in Therapy for Tuberculosis. N Engl J Med, 2015, 373(20):1986-1988. doi:10.1056/NEJMc1505196.
doi: 10.1056/NEJMc1505196. URL |
[55] |
de Steenwinkel JE, de Knegt GJ, ten Kate MT, et al. Time-kill kinetics of anti-tuberculosis drugs, and emergence of resistance, in relation to metabolic activity of Mycobacterium tuberculosis. J Antimicrob Chemother, 2010, 65(12): 2582-2589. doi:10.1093/jac/dkq374.
doi: 10.1093/jac/dkq374 pmid: 20947621 |
[56] |
Maartens G, Brill MJE, Pandie M, et al. Pharmacokinetic interaction between bedaquiline and clofazimine in patients with drug-resistant tuberculosis. Int J Tuberc Lung Dis, 2018, 22(1): 26-29. doi:10.5588/ijtld.17.0615.
doi: 10.5588/ijtld.17.0615 pmid: 29145924 |
[57] |
Gour A, Dogra A, Sharma S, et al. Effect of Disease State on the Pharmacokinetics of Bedaquiline in Renal-Impaired and Diabetic Rats. ACS Omega, 2021, 6(10): 6934-6941. doi:10.1021/acsomega.0c06165.
doi: 10.1021/acsomega.0c06165 pmid: 33748607 |
[58] |
Alghamdi WA, Al-Shaer MH, Kipiani M, et al. Pharmacokinetics of bedaquiline, delamanid and clofazimine in patients with multidrug-resistant tuberculosis. J Antimicrob Chemother, 2021, 76(4): 1019-1024. doi:10.1093/jac/dkaa550.
doi: 10.1093/jac/dkaa550 pmid: 33378452 |
[59] |
Haas DW, Abdelwahab MT, van Beek SW, et al. Pharmacogenetics of Between-Individual Variability in Plasma Clearance of Bedaquiline and Clofazimine in South Africa. J Infect Dis, 226(1): 147-156. doi:10.1093/infdis/jiac024.
doi: 10.1093/infdis/jiac024. URL |
[60] |
Rivera B, Castellsagué E, Bah I, et al. Biallelic NTHL1 Mutations in a Woman with Multiple Primary Tumors. N Engl J Med, 2015, 373(20): 1985-1986. doi:10.1056/NEJMc1506878.
doi: 10.1056/NEJMc1506878. URL |
[61] |
de Vos M, Ley SD, Wiggins KB, et al. Bedaquiline Microhete-roresistance after Cessation of Tuberculosis Treatment. N Engl J Med, 2019, 380(22): 2178-2180. doi:10.1056/NEJMc1815121.
doi: 10.1056/NEJMc1815121. URL |
[62] |
Li J, Yang G, Cai Q, et al. Safety, efficacy, and serum concentration monitoring of bedaquiline in Chinese patients with multidrug-resistant tuberculosis. Int J Infect Dis, 2021, 110: 179-186. doi:10.1016/j.ijid.2021.07.038.
doi: 10.1016/j.ijid.2021.07.038 pmid: 34293490 |
[63] |
Svensson EM, Karlsson MO. Modelling of mycobacterial load reveals bedaquiline’s exposure-response relationship in patients with drug-resistant TB. J Antimicrob Chemother, 2017, 72(12): 3398-3405. doi:10.1093/jac/dkx317.
doi: 10.1093/jac/dkx317 pmid: 28961790 |
[64] |
Nahid P, Dorman SE, Alipanah N, et al. Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: Treatment of Drug-Susceptible Tuberculosis. Clin Infect Dis, 2016, 63(7): e147-e195. doi:10.1093/cid/ciw376.
doi: 10.1093/cid/ciw376. |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||