Chinese Journal of Antituberculosis ›› 2022, Vol. 44 ›› Issue (9): 973-977.doi: 10.19982/j.issn.1000-6621.20220122
• Review Articles • Previous Articles Next Articles
Received:
2022-04-12
Online:
2022-09-10
Published:
2022-09-05
Contact:
Lu Yu
E-mail:luyu4876@hotmail.com
Supported by:
CLC Number:
Yao Rong, Lu Yu. Research progress on the drug resistance and mechanism of the anti-tuberculosis drug bedaquiline[J]. Chinese Journal of Antituberculosis, 2022, 44(9): 973-977. doi: 10.19982/j.issn.1000-6621.20220122
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20220122
[1] | World Health Organization. Global tuberculosis report 2021. Geneva: World Health 0rganization,2021. |
[2] |
Koul A, Vranckx L, Dhar N, et al. Delayed bactericidal response of Mycobacterium tuberculosis to bedaquiline involves remodelling of bacterial metabolism. Nat Commun, 2014, 5:3369. doi: 10.1038/ncomms4369.
doi: 10.1038/ncomms4369 URL |
[3] |
中华医学会结核病学分会. 抗结核新药贝达喹啉临床应用专家共识(2020年更新版). 中华结核和呼吸杂志, 2021, 44(2):81-87. doi: 10.3760/cma.j.cn112147-20200714-00805.
doi: 10.3760/cma.j.cn112147-20200714-00805 |
[4] |
王晓英, 罗明, 张汇征, 等. 结核分枝杆菌贝达喹啉和氯法齐明耐药及其交叉耐药机制研究进展. 中国人兽共患病学报, 2022, 38(2):165-169. doi: 10.3969/j.issn.1002-2694.2021.00.031.
doi: 10.3969/j.issn.1002-2694.2021.00.031 |
[5] | World Health Organization. The Use of Bedaquiline in the Treatment of Multidrug-Resistant Tuberculosis: Interim Policy Guidance. Geneva: World Health Organization, 2013. |
[6] |
Diacon AH, Pym A, Grobusch MP, et al. Multidrug-resistant tuberculosis and culture conversion with bedaquiline. N Engl J Med, 2014, 371(8):723-732. doi: 10.1056/NEJMoa1313865.
doi: 10.1056/NEJMoa1313865 URL |
[7] |
Pontali E, Sotgiu G, D’Ambrosio L, et al. Bedaquiline and multidrug-resistant tuberculosis: a systematic and critical analysis of the evidence. Eur Respir J, 2016, 47(2):394-402. doi: 10.1183/13993003.01891-2015.
doi: 10.1183/13993003.01891-2015 URL |
[8] |
Mirzayev F, Viney K, Linh NN, et al. World Health Organization recommendations on the treatment of drug-resistant tuberculosis, 2020 update. Eur Respir J, 2021, 57(6):2003300. doi: 10.1183/13993003.03300-2020.
doi: 10.1183/13993003.03300-2020 |
[9] |
Singh P, Kumari R, Lal R. Bedaquiline: Fallible Hope Against Drug Resistant Tuberculosis. Indian J Microbiol, 2017, 57(4):371-377. doi: 10.1007/s12088-017-0674-0.
doi: 10.1007/s12088-017-0674-0 URL |
[10] |
Wu SH, Chan HH, Hsiao HC, et al. Primary Bedaquiline Resistance Among Cases of Drug-Resistant Tuberculosis in Taiwan. Front Microbiol, 2021, 12:754249. doi: 10.3389/fmicb.2021.754249.
doi: 10.3389/fmicb.2021.754249 URL |
[11] |
He W, Liu C, Liu D, et al. Prevalence of Mycobacterium tuberculosis resistant to bedaquiline and delamanid in China. J Glob Antimicrob Resist, 2021, 26:241-248. doi: 10.1016/j.jgar.2021.06.007.
doi: 10.1016/j.jgar.2021.06.007 URL |
[12] |
Huang H, Ding N, Yang T, et al. Cross-sectional Whole-genome Sequencing and Epidemiological Study of Multidrug-resistant Mycobacterium tuberculosis in China. Clin Infect Dis, 2019, 69(3):405-413. doi: 10.1093/cid/ciy883.
doi: 10.1093/cid/ciy883 URL |
[13] |
Liu Y, Gao M, Du J, et al. Reduced Susceptibility of Mycobacterium tuberculosis to Bedaquiline During Antituberculosis Treatment and Its Correlation With Clinical Outcomes in China. Clin Infect Dis, 2021, 73(9):e3391-e3397. doi: 10.1093/cid/ciaa1002.
doi: 10.1093/cid/ciaa1002 |
[14] |
Ismail NA, Omar SV, Joseph L, et al. Defining Bedaquiline Susceptibility, Resistance, Cross-Resistance and Associated Genetic Determinants: A Retrospective Cohort Study. EBioMedicine, 2018, 28:136-142. doi: 10.1016/j.ebiom.2018.01.005.
doi: S2352-3964(18)30005-7 pmid: 29337135 |
[15] |
Veziris N, Bernard C, Guglielmetti L, et al. Rapid emergence of Mycobacterium tuberculosis bedaquiline resistance: lessons to avoid repeating past errors. Eur Respir J, 2017, 49(3):1601719. doi: 10.1183/13993003.01719-2016.
doi: 10.1183/13993003.01719-2016 |
[16] |
Peretokina IV, Krylova LY, Antonova OV, et al. Reduced susceptibility and resistance to bedaquiline in clinical M.tuberculosis isolates. J Infect, 2020, 80(5):527-535. doi: 10.1016/j.jinf.2020.01.007.
doi: S0163-4453(20)30031-1 pmid: 31981638 |
[17] |
Kaniga K, Hasan R, Jou R, et al. Bedaquiline Drug Resistance Emergence Assessment in Multidrug-Resistant Tuberculosis (MDR-TB): a 5-Year Prospective In Vitro Surveillance Study of Bedaquiline and Other Second-Line Drug Susceptibility Testing in MDR-TB Isolates. J Clin Microbiol, 2022, 60(1):e291920. doi: 10.1128/JCM.02919-20.
doi: 10.1128/JCM.02919-20 |
[18] |
Mallick JS, Nair P, Abbew ET, et al. Acquired bedaquiline resistance during the treatment of drug-resistant tuberculosis: a systematic review. JAC Antimicrob Resist, 2022, 4(2):dlac029. doi: 10.1093/jacamr/dlac029.
doi: 10.1093/jacamr/dlac029 URL |
[19] |
Kunkel A, Cobelens FG, Cohen T. Tradeoffs in Introduction Policies for the Anti-Tuberculosis Drug Bedaquiline: A Model-Based Analysis. PLoS Med, 2016, 13(10):e1002142. doi: 10.1371/journal.pmed.1002142.
doi: 10.1371/journal.pmed.1002142 URL |
[20] |
Nimmo C, Millard J, van Dorp L, et al. Population-level emergence of bedaquiline and clofazimine resistance-associated variants among patients with drug-resistant tuberculosis in southern Africa: a phenotypic and phylogenetic analysis. Lancet Microbe, 2020, 1(4):e165-e174. doi: 10.1016/S2666-5247(20)30031-8.
doi: 10.1016/S2666-5247(20)30031-8 |
[21] |
Ghodousi A, Rizvi AH, Baloch AQ, et al. Acquisition of Cross-Resistance to Bedaquiline and Clofazimine following Treatment for Tuberculosis in Pakistan. Antimicrob Agents Chemother, 2019, 63(9):e00915-19. doi: 10.1128/AAC.00915-19.
doi: 10.1128/AAC.00915-19 |
[22] |
Mokrousov I, Akhmedova G, Molchanov V, et al. Frequent acquisition of bedaquiline resistance by epidemic extensively drug-resistant Mycobacterium tuberculosis strains in Russia during long-term treatment. Clin Microbiol Infect, 2021, 27(3):478-480. doi: 10.1016/j.cmi.2020.08.030.
doi: 10.1016/j.cmi.2020.08.030 URL |
[23] |
Kendall EA, Fofana MO, Dowdy DW. Burden of transmitted multidrug resistance in epidemics of tuberculosis: a transmission modelling analysis. Lancet Respir Med, 2015, 3(12):963-972. doi: 10.1016/S2213-2600(15)00458-0.
doi: 10.1016/S2213-2600(15)00458-0 pmid: 26597127 |
[24] |
Hartkoorn RC, Uplekar S, Cole ST. Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2014, 58(5):2979-2981. doi: 10.1128/AAC.00037-14.
doi: 10.1128/AAC.00037-14 pmid: 24590481 |
[25] |
Kadura S, King N, Nakhoul M, et al. Systematic review of mutations associated with resistance to the new and repurposed Mycobacterium tuberculosis drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid. J Antimicrob Chemother, 2020, 75(8):2031-2043. doi: 10.1093/jac/dkaa136.
doi: 10.1093/jac/dkaa136 pmid: 32361756 |
[26] |
Zimenkov DV, Nosova EY, Kulagina EV, et al. Examination of bedaquiline- and linezolid-resistant Mycobacterium tuberculosis isolates from the Moscow region. J Antimicrob Chemother, 2017, 72(7):1901-1906. doi: 10.1093/jac/dkx094.
doi: 10.1093/jac/dkx094 pmid: 28387862 |
[27] |
Pang Y, Zong Z, Huo F, et al. In Vitro Drug Susceptibility of Bedaquiline, Delamanid, Linezolid, Clofazimine, Moxifloxacin, and Gatifloxacin against Extensively Drug-Resistant Tuberculosis in Beijing, China. Antimicrob Agents Chemother, 2017, 61(10):e00900-17. doi: 10.1128/AAC.00900-17.
doi: 10.1128/AAC.00900-17 |
[28] |
Ghodousi A, Hussain RA, Khanzada FM, et al. In vivo microevolution of Mycobacterium tuberculosis and transient emergence of atpE_Ala63Pro mutation during treatment in a pre-XDR TB patient. Eur Respir J, 2022, 59(3):2102102. doi: 10.1183/13993003.02102-2021.
doi: 10.1183/13993003.02102-2021 |
[29] |
Gomez-Gonzalez PJ, Perdigao J, Gomes P, et al. Genetic diversity of candidate loci linked to Mycobacterium tuberculosis resistance to bedaquiline, delamanid and pretomanid. Sci Rep, 2021, 11(1):19431. doi: 10.1038/s41598-021-98862-4.
doi: 10.1038/s41598-021-98862-4 URL |
[30] |
Omar SV, Ismail F, Ndjeka N, et al. Bedaquiline-Resistant Tuberculosis Associated with Rv0678 Mutations. N Engl J Med, 2022, 386(1):93-94. doi: 10.1056/NEJMc2103049.
doi: 10.1056/NEJMc2103049 URL |
[31] |
Miotto P, Zhang Y, Cirillo DM, et al. Drug resistance mechanisms and drug susceptibility testing for tuberculosis. Respirology, 2018, 23(12):1098-1113. doi: 10.1111/resp.13393.
doi: 10.1111/resp.13393 pmid: 30189463 |
[32] |
Kaniga K, Aono A, Borroni E, et al. Validation of Bedaquiline Phenotypic Drug Susceptibility Testing Methods and Breakpoints: a Multilaboratory, Multicountry Study. J Clin Microbiol, 2020, 58(4):e01677-19. doi: 10.1128/JCM.01677-19.
doi: 10.1128/JCM.01677-19 |
[33] |
Gashaw F, Erko B, Mekonnen Y, et al. Phenotypic and genotypic drug sensitivity profiles of Mycobacterium tuberculosis infection and associated factors in northeastern Ethiopia. BMC Infect Dis, 2021, 21(1):261. doi: 10.1186/s12879-021-05961-8.
doi: 10.1186/s12879-021-05961-8 pmid: 33711936 |
[34] |
Tiberi S, Cabibbe AM, Tomlins J, et al. Bedaquiline Phenotypic and Genotypic Susceptibility Testing, Work in Progress!EBioMedicine, 2018, 29:11-12. doi: 10.1016/j.ebiom.2018.02.006.
doi: 10.1016/j.ebiom.2018.02.006 |
[35] | World Health Organization. Technical Report on Critical Concentrations for Drug Susceptibility Testing of Medicines Used in the Treatment of Drug-Resistant Tuberculosis. Geneva: World Health Organization, 2018. |
[36] | The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of Mics and Zone Diameters.Switzerland: 2020. |
[37] |
Ismail N, Riviere E, Limberis J, et al. Genetic variants and their association with phenotypic resistance to bedaquiline in Mycobacterium tuberculosis: a systematic review and individual isolate data analysis. Lancet Microbe, 2021, 2(11):e604-e616. doi: 10.1016/s2666-5247(21)00175-0.
doi: 10.1016/s2666-5247(21)00175-0 |
[38] |
Degiacomi G, Sammartino JC, Sinigiani V, et al. In vitro Study of Bedaquiline Resistance in Mycobacterium tuberculosis Multi-Drug Resistant Clinical Isolates. Front Microbiol, 2020, 11:559469. doi: 10.3389/fmicb.2020.559469.
doi: 10.3389/fmicb.2020.559469 URL |
[39] |
Zhang S, Chen J, Cui P, et al. Identification of novel mutations associated with clofazimine resistance in Mycobacterium tuberculosis. J Antimicrob Chemother, 2015, 70(9):2507-2510. doi: 10.1093/jac/dkv150.
doi: 10.1093/jac/dkv150 pmid: 26045528 |
[40] |
Almeida D, Ioerger T, Tyagi S, et al. Mutations in pepQ Confer Low-Level Resistance to Bedaquiline and Clofazimine in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2016, 60(8):4590-4599. doi: 10.1128/AAC.00753-16.
doi: 10.1128/AAC.00753-16 pmid: 27185800 |
[41] |
Ismail NA, Omar SV, Moultrie H, et al. Assessment of epidemiological and genetic characteristics and clinical outcomes of resistance to bedaquiline in patients treated for rifampicin-resistant tuberculosis: a cross-sectional and longitudinal study. Lancet Infect Dis, 2022, 22(4):496-506. doi: 10.1016/S1473-3099(21)00470-9.
doi: 10.1016/S1473-3099(21)00470-9 URL |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||