Chinese Journal of Antituberculosis ›› 2022, Vol. 44 ›› Issue (6): 539-543.doi: 10.19982/j.issn.1000-6621.20220066
• Interpretation of Standards • Previous Articles Next Articles
Received:
2022-03-08
Online:
2022-06-10
Published:
2022-06-01
Contact:
WU Xue-qiong
E-mail:xueqiongwu@139.com
Supported by:
CLC Number:
AN Hui-ru, WU Xue-qiong. Interpretation of immunoadjuvant therapy in Expert consensus on immune function assessment and immunotherapy in patients with active tuberculosis (2021 Edition)[J]. Chinese Journal of Antituberculosis, 2022, 44(6): 539-543. doi: 10.19982/j.issn.1000-6621.20220066
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20220066
[1] |
Sia JK, Rengarajan J. Immunology of Mycobacterium tuberculosis Infections. Microbiol Spectr, 2019, 7(4): 10.1128/microbiolspec.GPP3-0022-2018. doi: 10.1128/microbiolspec.GPP3-0022-2018.
doi: 10.1128/microbiolspec.GPP3-0022-2018 |
[2] |
Roy S, Schmeier S, Kaczkowski B, et al. Transcriptional landscape of Mycobacterium tuberculosis infection in macrophages. Sci Rep, 2018, 8(1): 6758. doi: 10.1038/s41598-018-24509-6.
doi: 10.1038/s41598-018-24509-6 URL |
[3] |
中国人民解放军总医院第八医学中心全军结核病研究所/全军结核病防治重点实验室/结核病诊疗新技术北京市重点实验室, 《中国防痨杂志》编辑委员会, 中国医疗保健国际交流促进会结核病防治分会基础和临床学部. 活动性结核病患者免疫功能状态评估和免疫治疗专家共识(2021年版). 中国防痨杂志, 2022, 44(1): 9-27. doi: 10.19982/j.issn.1000-6621.20210680.
doi: 10.19982/j.issn.1000-6621.20210680 |
[4] |
Sampath P, Moideen K, Ranganathan UD, et al. Monocyte Subsets: Phenotypes and Function in Tuberculosis Infection. Front Immunol, 2018, 9:1726. doi: 10.3389/fimmu.2018.01726.
doi: 10.3389/fimmu.2018.01726 URL |
[5] |
Shi L, Jiang Q, Bushkin Y, et al. Biphasic Dynamics of Macrophage Immunometabolism during Mycobacterium tuberculosis Infection. mBio, 2019, 10(2): e02550-18. doi: 10.1128/mBio.02550-18.
doi: 10.1128/mBio.02550-18 |
[6] |
Garand M, Goodier M, Owolabi O, et al. Functional and Phenotypic Changes of Natural Killer Cells in Whole Blood during Mycobacterium tuberculosis Infection and Disease. Front Immunol, 2018, 9:257. doi: 10.3389/fimmu.2018.00257.
doi: 10.3389/fimmu.2018.00257 URL |
[7] |
Tully G, Kortsik C, Höhn H, et al. Highly focused T cell responses in latent human pulmonary Mycobacterium tuberculosis infection. J Immunol, 2005, 174(4): 2174-2184. doi: 10.4049/jimmunol.174.4.2174.
doi: 10.4049/jimmunol.174.4.2174 URL |
[8] |
Cooper AM. Cell-mediated immune responses in tuberculosis. Annu Rev Immunol, 2009, 27:393-422. doi: 10.1146/annurev.immunol.021908.132703.
doi: 10.1146/annurev.immunol.021908.132703 URL |
[9] |
Urdahl KB, Shafiani S, Ernst JD. Initiation and regulation of T-cell responses in tuberculosis. Mucosal Immunol, 2011, 4(3): 288-293. doi: 10.1038/mi.2011.10.
doi: 10.1038/mi.2011.10 pmid: 21451503 |
[10] |
Morgan J, Muskat K, Tippalagama R, et al. Classical CD4 T cells as the cornerstone of antimycobacterial immunity. Immunol Rev, 2021, 301(1): 10-29. doi: 10.1111/imr.12963.
doi: 10.1111/imr.12963 URL |
[11] |
Harris J, De Haro SA, Master SS, et al. T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity, 2007, 27(3): 505-517. doi: 10.1016/j.immuni.2007.07.022.
doi: 10.1016/j.immuni.2007.07.022 pmid: 17892853 |
[12] |
Schurz H, Daya M, Möller M et al. TLR1, 2, 4, 6 and 9 Variants Associated with Tuberculosis Susceptibility: A Systematic Review and Meta-Analysis. PLoS One, 2015, 10(10):e0139711. doi: 10.1371/journal.pone.0139711.
doi: 10.1371/journal.pone.0139711 |
[13] |
Sadki K, Lamsyah H, Rueda B, et al. Analysis of MIF, FCGR2A and FCGR3A gene polymorphisms with susceptibility to pulmonary tuberculosis in Moroccan population. J Genet Genomics, 2010, 37(4): 257-264. doi: 10.1016/s1673-8527(09)60044-8.
doi: 10.1016/s1673-8527(09)60044-8 URL |
[14] |
Pieters J. Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell Host Microbe, 2008, 3(6): 399-407. doi: 10.1016/j.chom.2008.05.006.
doi: 10.1016/j.chom.2008.05.006 pmid: 18541216 |
[15] |
Liu C, He T, Rong Y, et al. Association of Mannose-binding Lectin Polymorphisms with Tuberculosis Susceptibility among Chinese. Sci Rep, 2016, 6:36488. doi: 10.1038/srep36488.
doi: 10.1038/srep36488 URL |
[16] |
Boisson-Dupuis S. The monogenic basis of human tuberculosis. Hum Genet, 2020, 139(6/7): 1001-1009. doi: 10.1007/s00439-020-02126-6.
doi: 10.1007/s00439-020-02126-6 URL |
[17] |
Ogishi M, Yang R, Aytekin C, et al. Inherited PD-1 deficiency underlies tuberculosis and autoimmunity in a child. Nat Med, 2021, 27(9): 1646-1654. doi: 10.1038/s41591-021-01388-5.
doi: 10.1038/s41591-021-01388-5 URL |
[18] |
Pires D, Marques J, Pombo JP, et al. Role of Cathepsins in Mycobacterium tuberculosis Survival in Human Macrophages. Sci Rep, 2016, 6:32247. doi: 10.1038/srep32247.
doi: 10.1038/srep32247 URL |
[19] |
Koul A, Herget T, Klebl B, et al. Interplay between mycobacteria and host signalling pathways. Nat Rev Microbiol, 2004, 2(3): 189-202. doi: 10.1038/nrmicro840.
doi: 10.1038/nrmicro840 URL |
[20] |
Li F, Feng L, Jin C, et al. LpqT improves mycobacteria survival in macrophages by inhibiting TLR2 mediated inflammatory cytokine expression and cell apoptosis. Tuberculosis (Edinb), 2018, 111:57-66. doi: 10.1016/j.tube.2018.05.007.
doi: 10.1016/j.tube.2018.05.007 URL |
[21] |
尚晓倩, 赵慧, 马秀敏慧,等. microRNA与结核分枝杆菌感染的致病机制研究进展. 中华医院感染学杂志, 2019, 29(3): 477-480. doi: 10.11816/cn.ni.2019-174265.
doi: 10.11816/cn.ni.2019-174265 |
[22] |
张益源, 伊正君, 付玉荣. microRNA在结核分枝杆菌抗细胞自噬作用中的研究进展. 生物化学与生物物理进展, 2019, 46(1): 43-50. doi: 10.16476/j.pibb.2018.0133.
doi: 10.16476/j.pibb.2018.0133 |
[23] |
Portal-Celhay C, Tufariello JM, Srivastava S, et al. Mycobacterium tuberculosis EsxH inhibits ESCRT-dependent CD4+ T-cell activation. Nat Microbiol, 2016, 2:16232. doi: 10.1038/nmicrobiol.2016.232.
doi: 10.1038/nmicrobiol.2016.232 pmid: 27918526 |
[24] |
Schildberg FA, Klein SR, Freeman GJ, et al. Coinhibitory Pathways in the B7-CD 28 Ligand-Receptor Family. Immunity, 2016, 44(5): 955-972. doi: 10.1016/j.immuni.2016.05.002.
doi: 10.1016/j.immuni.2016.05.002 pmid: 27192563 |
[25] |
Wang L, Wu J, Li J, et al. Host-mediated ubiquitination of a mycobacterial protein suppresses immunity. Nature, 2020, 577(7792): 682-688. doi: 10.1038/s41586-019-1915-7.
doi: 10.1038/s41586-019-1915-7 URL |
[26] |
Roy E, Lowrie DB, Jolles SR. Current strategies in TB immunotherapy. Curr Mol Med, 2007, 7(4): 373-386. doi: 10.2174/156652407780831557.
doi: 10.2174/156652407780831557 URL |
[27] |
Periyasamy KM, Ranganathan UD, Tripathy SP, et al. Vitamin D-A host directed autophagy mediated therapy for tuberculosis. Mol Immunol, 2020, 127:238-244. doi: 10.1016/j.molimm.2020.08.007.
doi: 10.1016/j.molimm.2020.08.007 pmid: 33039674 |
[28] |
Byeon S, Cho JH, Jung HA, et al. PD-1 inhibitors for non-small cell lung cancer patients with special issues: Real-world evidence. Cancer Med, 2020, 9(7): 2352-2362. doi: 10.1002/cam4.2868.
doi: 10.1002/cam4.2868 URL |
[29] |
付亮, 梁娟, 张国良 等. γδT细胞在结核病免疫治疗的研究及其应用前景. 中国防痨杂志, 2019, 41(6): 695-699. doi: 10.3969/j.issn.1000-6621.2019.06.019.
doi: 10.3969/j.issn.1000-6621.2019.06.019 |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||