[1] |
World Health Organization. Global tuberculosis report 2024. Geneva: World Health Organization, 2024.
|
[2] |
Li T, Yan X, Du X, et al. Extrapulmonary tuberculosis in China: a national survey. Int J Infect Dis, 2023, 128:69-77. doi:10.1016/j.ijid.2022.12.005.
|
[3] |
中华人民共和国国家卫生和计划生育委员会. WS 288—2017肺结核诊断. 结核与肺部疾病杂志, 2024, 5(4): 376-378. doi:10.19983/j.issn.2096-8493.2024022.
|
[4] |
World Health Organization. WHO consolidated guidelines on tuberculosis: Module 3: Diagnosis-Rapid diagnostics for tuberculosis detection. Geneva: World Health Organization, 2024.
|
[5] |
Fâcă AI, Udeanu DI, Arsene AL, et al. Nutritional Deficiencies and Management in Tuberculosis: Pharmacotherapeutic and Clinical Implications. Nutrients, 2025, 17(11):1878. doi:10.3390/nu17111878.
|
[6] |
Lu C, Xu Y, Li X, et al. Nutritional status affects immune function and exacerbates the severity of pulmonary tuberculosis. Front Immunol, 2024, 15:1407813. doi:10.3389/fimmu.2024.1407813.
|
[7] |
Liu QX, Tang DY, Xiang X, et al. Associations between nutritional and immune status and clinicopathologic factors in patients with tuberculosis: A comprehensive analysis. Front Cell Infect Microbiol, 2022, 12:1013751. doi:10.3389/fcimb.2022.1013751.
|
[8] |
VanValkenburg A, Kaipilyawar V, Sarkar S, et al. Malnutrition leads to increased inflammation and expression of tuberculosis risk signatures in recently exposed household contacts of pulmonary tuberculosis. Front Immunol, 2022, 13:1011166. doi:10.3389/fimmu.2022.1011166.
|
[9] |
Fallah S, Nasehi M, Etemadinezhad S, et al. A Five-Year Epidemiological Study of Extra-Pulmonary Tuberculosis and Its Related Risk Factors in Iran. Tanaffos, 2022, 21(2):221-229.
|
[10] |
Rolo M, González-Blanco B, Reyes CA, et al. Epidemiology and factors associated with Extra-pulmonary tuberculosis in a Low-prevalence area. J Clin Tuberc Other Mycobact Dis, 2023, 32:100377. doi:10.1016/j.jctube.2023.100377.
|
[11] |
Wei B, Guo Y, Zhang L, et al. Reference ranges of T lymphocyte subsets by single-platform among healthy population in southwest China. BMC Immunol, 2021, 22(1):80. doi:10.1186/s12865-021-00474-0.
pmid: 34930155
|
[12] |
Zhuang L, Yang L, Li L, et al. Mycobacterium tuberculosis: immune response, biomarkers, and therapeutic intervention. MedComm (2020), 2024, 5(1):e419. doi:10.1002/mco2.419.
|
[13] |
Kudryavtsev I, Zinchenko Y, Serebriakova M, et al. A Key Role of CD8+ T Cells in Controlling of Tuberculosis Infection. Diagnostics (Basel), 2023, 13(18):2961. doi:10.3390/diagnostics13182961.
|
[14] |
An HR, Bai XJ, Liang JQ, et al. The relationship between absolute counts of lymphocyte subsets and clinical features in patients with pulmonary tuberculosis. Clin Respir J, 2022, 16(5):369-379. doi:10.1111/crj.13490.
|
[15] |
Ma WW, Wang LC, Zhao DA, et al. Analysis of T-lymphocyte subsets and risk factors in children with tuberculosis. Tuberculosis (Edinb), 2024, 146:102496. doi:10.1016/j.tube.2024.102496.
|
[16] |
Gupta KB, Gupta R, Atreja A, et al. Tuberculosis and nutrition. Lung India, 2009, 26(1):9-16. doi:10.4103/0970-2113.45198.
pmid: 20165588
|
[17] |
Lim J, Kim JS, Kim HW, et al. Metabolic Disorders Are Associated With Drug-Induced Liver Injury During Antituberculosis Treatment:A Multicenter Prospective Observational Cohort Study in Korea. Open Forum Infect Dis, 2023, 10(8):ofad422. doi:10.1093/ofid/ofad422.
|
[18] |
Emiroglu C, Görpelioglu S, Aypak C. The Relationship between Nutritional Status, Anemia and Other Vitamin Deficiencies in the Elderly Receiving Home Care. J Nutr Health Aging, 2019, 23(7):677-682. doi:10.1007/s12603-019-1215-9.
pmid: 31367734
|
[19] |
Li K, Ran R, Jiang Z, et al. Changes in T-lymphocyte subsets and risk factors in human immunodeficiency virus-negative patients with active tuberculosis. Infection, 2020, 48(4):585-595. doi:10.1007/s15010-020-01451-2.
pmid: 32472529
|
[20] |
Mohammad Isa, Ira Nurrasyidah, Elok Hikmatun Nikmah, et al. Nutritional Status of Hospitalized Tuberculosis Patients in South Kalimantan: A Cross-Sectional Study. MMJKK, 2022, 22(2):129-135. doi:10.18196/mmjkk.v22i2.15021.
|
[21] |
陈木兴, 吴迪, 陈晓红, 等. 一线抗结核致药物性肝损伤早期预警模型建立. 中国防痨杂志, 2024, 46 (S1): 21-28.
|
[22] |
Sankar P, Mishra BB. Early innate cell interactions with Mycobacterium tuberculosis in protection and pathology of tuberculosis. Front Immunol, 2023, 14:1260859. doi:10.3389/fimmu.2023.1260859.
|
[23] |
Li F, Chen D, Zeng Q, et al. Possible Mechanisms of Lymphopenia in Severe Tuberculosis. Microorganisms, 2023, 11(11):2640. doi:10.3390/microorganisms11112640.
|
[24] |
Hoyt KJ, Sarkar S, White L, et al. Effect of malnutrition on radiographic findings and mycobacterial burden in pulmonary tuberculosis. PLoS One, 2019, 14(3):e0214011. doi:10.1371/journal.pone.0214011.
|
[25] |
Boni FG, Hamdi I, Koundi LM, et al. Cytokine storm in tuberculosis and IL-6 involvement. Infect Genet Evol, 2022, 97:105166. doi:10.1016/j.meegid.2021.105166.
|
[26] |
Nagabhushanam V, Solache A, Ting LM, et al. Innate inhibition of adaptive immunity: Mycobacterium tuberculosis-induced IL-6 inhibits macrophage responses to IFN-gamma. J Immunol, 2003, 171(9):4750-4757. doi:10.4049/jimmunol.171.9.4750.
pmid: 14568951
|
[27] |
Lin PL, Myers A, Smith L, et al. Tumor necrosis factor neutralization results in disseminated disease in acute and latent Mycobacterium tuberculosis infection with normal granuloma structure in a cynomolgus macaque model. Arthritis Rheum, 2010, 62(2):340-350. doi:10.1002/art.27271.
|
[28] |
Jacobs M, Togbe D, Fremond C, et al. Tumor necrosis factor is critical to control tuberculosis infection. Microbes Infect, 2007, 9(5):623-628. doi:10.1016/j.micinf.2007.02.002.
pmid: 17409008
|
[29] |
Chandrasekaran P, Saravanan N, Bethunaickan R, et al. Malnutrition: Modulator of Immune Responses in Tuberculosis. Front Immunol, 2017, 8:1316. doi:10.3389/fimmu.2017.01316.
pmid: 29093710
|
[30] |
Johnson WE, Odom A, Cintron C, et al. Comparing tuberculosis gene signatures in malnourished individuals using the TBSignatureProfiler. BMC Infect Dis, 2021, 21(1):106. doi:10.1186/s12879-020-05598-z.
pmid: 33482742
|
[31] |
Belinskaia DA, Voronina PA, Goncharov NV. Integrative Role of Albumin: Evolutionary, Biochemical and Pathophysiological Aspects. J Evol Biochem Physiol, 2021, 57(6):1419-1448. doi:10.1134/S002209302106020X.
|