| [1] | Cherian JJ, Lobo I, Sukhlecha A , et al. Treatment outcome of extrapulmonary tuberculosis under Revised National Tuberculosis Control Programme. Indian J Tuberc, 2017,64(2):104-108. doi: 10.1016/j.ijtb.2016.11.028    
																																					URL
 | 
																													
																						| [2] | Che NY, Huang SJ, Ma Y , et al. Comparison of histological, microbiological, and molecular methods in diagnosis of patients with TBLN having different anti-TB treatment background. Biomed Environ Sci, 2017,30(6):418-425. | 
																													
																						| [3] | Krishna M, Gole SG . Comparison of conventional Ziehl-Neelsen method of acid fast bacilli with modified bleach method in tuberculous lymphadenitis. J Cytol, 2017,34(4):188-192. doi: 10.4103/JOC.JOC_84_16    
																																					URL
 | 
																													
																						| [4] | Wu RI, Mark EJ, Hunt JL . Staining for acid-fast bacilli in surgical pathology: practice patterns and variations. Hum Pathol, 2012,43(11):1845-1851. doi: 10.1016/j.humpath.2012.01.006    
																																					URL    
																																					pmid: 22542129
 | 
																													
																						| [5] | Ince AT, Güneᶊ P, Senateᶊ E , et al. Can an immunohistochemistry method differentiate intestinal tuberculosis from Crohn’s disease in biopsy specimens? Dig Dis Sci, 2011,56(4):1165-1170. doi: 10.1007/s10620-010-1399-7    
																																					URL
 | 
																													
																						| [6] | Kezlarian BE, Cheng L, Gupta NS , et al. Vasitis nodosa and related lesions: a modern immunohistochemical staining profile with special emphasis on novel diagnostic dilemmas. Hum Pathol, 2017, pii: S0046-8177(17) 30464-1. | 
																													
																						| [7] | Cadioli A, Rossi G, Costantini M , et al. Lung cancer histologic and immunohistochemical heterogeneity in the era of molecular therapies: analysis of 172 consecutive surgically resected, entirely sampled pulmonary carcinomas. Am J Surg Pathol, 2014,38(4):502-509. doi: 10.1097/PAS.0000000000000154    
																																					URL
 | 
																													
																						| [8] | Zhao J, Wang X, Xue L , et al. The use of mutation-specific antibodies in predicting the effect of EGFR-TKIs in patients with non-small-cell lung cancer. J Cancer Res Clin Oncol, 2014,140(5):849-857. doi: 10.1007/s00432-014-1618-2    
																																					URL
 | 
																													
																						| [9] | Goel MM, Budhwar P, Jain A . Immunocytochemistry versus nucleic acid amplification in fine needle aspirates and tissues of extrapulmonary tuberculosis. J Cytol, 2012,29(3):157-164. doi: 10.4103/0970-9371.101151    
																																					URL
 | 
																													
																						| [10] | Friedrich SO, Rachow A, Saathoff E , et al. Assessment of the sensitivity and specificity of Xpert MTB/RIF assay as an early sputum biomarker of response to tuberculosis treatment. Lancet Respir Med, 2013,1(6):462-470. doi: 10.1016/S2213-2600(13)70119-X    
																																					URL
 | 
																													
																						| [11] | Sharma K, Ashkin D, Fiorella P , et al. Evaluation of multiplex polymerase chain reaction utilising multiple targets in Mycobacterium tuberculosis direct test negative but culture positive cases: a potential method for enhancing the diagnosis of tuberculosis. Indian J Med Microbiol, 2013,31(4):370-373. doi: 10.4103/0255-0857.118896    
																																					URL
 | 
																													
																						| [12] | Park KS, Kim JY, Lee JW , et al. Comparison of the Xpert MTB/RIF and Cobas TaqMan MTB assays for detection of Mycobacterium tuberculosis in respiratory specimens. J Clin Microbiol, 2013,51(10):3225-3227. doi: 10.1128/JCM.01335-13    
																																					URL
 | 
																													
																						| [13] | 中华医学会结核病学分会, 结核病病理学诊断专家共识编写组. 中国结核病病理学诊断专家共识. 中华结核和呼吸杂志, 2017,40(6):419-425. doi: 10.3760/cma.j.issn.1001-0939.2017.06.005    
																																					URL
 | 
																													
																						| [14] | Mitra SK, Misra RK, Rai P . Cytomorphological patterns of tubercular lymphadenitis and its comparison with Ziehl-Neelsen staining and culture in eastern up. (Gorakhpur region): Cytological study of 400 cases. J Cytol, 2017,34(3):139-143. doi: 10.4103/JOC.JOC_207_15    
																																					URL
 | 
																													
																						| [15] | Sheikh JA, Khuller GK, Verma I . Immunotherapeutic role of Ag85B as an adjunct to antituberculous chemotherapy. J Immune Based Ther Vaccines, 2011,9:4. doi: 10.1186/1476-8518-9-4    
																																					URL    
																																					pmid: 3142482
 | 
																													
																						| [16] | Yuan W, Dong N, Zhang L , et al. Immunogenicity and protective efficacy of a tuberculosis DNA vaccine expressing a fusion protein of Ag85B-Esat6-HspX in mice. Vaccine, 2012,30(14):2490-2497. doi: 10.1016/j.vaccine.2011.06.029    
																																					URL
 | 
																													
																						| [17] | Harth G, Lee BY, Wang J , et al. Novel insights into the genetics, biochemistry, and immunocytochemistry of the 30-kilodalton major extracellular protein of Mycobacterium tuberculosis. Infect Immun, 1996,64(8):3038-3047. | 
																													
																						| [18] | Målen H, Søfteland T, Wiker HG . Antigen analysis of Mycobacterium tuberculosis H37Rv culture filtrate proteins. Scand J Immunol, 2008,67(3):245-252. doi: 10.1111/j.1365-3083.2007.02064.x    
																																					URL    
																																					pmid: 18208443
 | 
																													
																						| [19] | 穆晶, 赵丹, 刘子臣 , 等. 荧光定量PCR技术在骨关节结核石蜡包埋标本检测中的应用价值. 中国防痨杂志, 2016,38(4):277-281. doi: 10.3969/j.issn.1000-6621.2016.04.009    
																																					URL
 | 
																													
																						| [20] | Costa P, Ferreira AS, Amaro A , et al. Enhanced detection of tuberculous mycobacteria in animal tissues using a semi-nested probe-based real-time PCR. PLoS One, 2013,8(11):e81337. doi: 10.1371/journal.pone.0081337    
																																					URL
 | 
																													
																						| [21] | Ereqat S, Nasereddin A, Levine H , et al. First-time detection of Mycobacterium bovis in livestock tissues and milk in the West Bank, Palestinian Territories. PLoS Negl Trop Dis, 2013,7(9):e2417. doi: 10.1371/journal.pntd.0002417    
																																					URL
 | 
																													
																						| [22] | Chen R, Gao XB, Liu ZH , et al. Combination of multiplex PCR with denaturing high-performance liquid chromatography for rapid detection of Mycobacterium genus and simultaneous identification of the Mycobacterium tuberculosis complex. Diagn Microbiol Infect Dis, 2013,77(1):53-57. doi: 10.1016/j.diagmicrobio.2013.06.003    
																																					URL
 | 
																													
																						| [23] | Stewart LD, McNair J, McCallan L, et al.  Improved detection of Mycobacterium bovis infection in bovine lymph node tissue using immunomagnetic separation (IMS)-based methods. PLoS One, 2013,8(3):e58374. doi: 10.1371/journal.pone.0058374    
																																					URL
 |