中国人群N-乙酰基转移酶2基因型分布特征及不同基因分型方法的比较
Distribution characteristics of N-acetyltransferase-2 genotypes and comparison methods of different genotyping in Chinese population
通信作者:
责任编辑: 李敬文
收稿日期: 2022-01-12
| 基金资助: |
|
Corresponding authors:
Received: 2022-01-12
| Fund supported: |
|
目的: 分析中国人群N-乙酰基转移酶2(N-acetyltransferase-2,NAT2)基因型分布特征及不同基因分型方法的效能。 方法: 对包含中国人群NAT2基因多态性数据的文献进行检索,检索范围包括Medline、PubMed、Embase、维普中文科技期刊数据库、中国知网和万方医学网等数据库,检索时限为数据库建库至 2021年12月1日。英文检索词:NAT2、N-acetyltransferase、polymorphism、China或Chinese等;中文检索词:NAT2、基因多态性、中国等。使用Newcastle-Ottawa Scale(NOS)评分表对纳入的文献进行质量评价和风险评估。提取文献中NAT2基因型及等位基因信息,重建单项研究NAT2基因型数据库并利用Phase 2.1软件进行单体型和双体型重建及验证。构建中国人群NAT2基因型分布数据库,分析NAT2等位基因和基因型分布特点。基于构建的NAT2基因型数据库,评估不同NAT2基因型分型推断方法的效能。 结果: 经过文献检索及筛选,共有10项研究的结果纳入本研究。汇总纳入10项研究中对照组4010例个体的基因型数据,NAT2快代谢基因型、中间代谢基因型、慢代谢基因型总体频率分别为25.79%(1034/4010)、50.87%(2040/4010)、23.34%(936/4010),NAT2非慢代谢基因型总体频率为76.66%(3074/4010);NAT2快、慢代谢等位基因总体携带频率分别为51.19%(4096/8002)及48.81%(3906/8002)。3SNP法推断NAT2慢代谢基因型的敏感度和特异度分别为99.92%(1249/1250)和99.81%(4190/4198);推断NAT2快代谢基因型的敏感度和特异度分别为100.00%(1484/1484)和99.92%(3961/3964)。2SNP法推断NAT2慢代谢基因型的敏感度和特异度分别为99.52%(1194/1250)和98.36%(4129/4198);推断NAT2快代谢基因型的敏感度和特异度分别为93.19%(1383/1484)和96.01%(3806/3964)。3SNP法和2SNP法推断NAT2慢代谢基因型敏感度差异无统计学意义(χ2=0.189,P=0.664),一致性较好(Kappa=0.932)。3SNP法推断NAT2快代谢基因型敏感度优于2SNP法(χ2=10.973,P=0.001)。 结论: 我国人群NAT2代谢基因型以非慢代谢基因型为主,在中国人群中3SNP法推断NAT2基因型效能优于2SNP法。
关键词:
Objective: To analyze the distribution characteristics of N-acetyltransferase-2 (NAT2) genotypes and the effectiveness of different genotyping methods in Chinese population. Methods: The literatures containing NAT2 gene polymorphism data of Chinese population were retrieved in Medline, PubMed, Embase, China Science and Technology Journal Database, China National Knowledge Internet, and Wanfang database. The retrieval time limit was from the establishment of the database to December 1, 2021, with the English search words of NAT2, N-acetyltransferase, polymorphism, China or Chinese, etc., and Chinese search words of NAT2, gene polymorphism, China, etc.. Newcastle Ottawa scale (NOS) was used to evaluate the quality and bias risk of the included literature. The NAT2 genotype and allele data in the literature were extracted, the NAT2 genotype database of single study was reconstructed, and the haplotype and diplotype were reconstructed and verified by phase 2.1 software. The NAT2 genotype of the control group in the literature were extracted to construct the NAT2 genotype distribution database of Chinese population, and the distribution characteristics of NAT2 alleles and genotypes were analyzed. Based on the constructed NAT2 genotype database, the efficiency of different NAT2 genotyping panels was evaluated. Results: Through literature retrieval and screening, the results of 10 studies were included. The genotype data in the control group of 4010 individuals were summarized. The overall frequencies of NAT2 fast, intermediate and slow metabolism genotype were 25.79% (1034/4010), 50.87% (2040/4010) and 23.34% (936/4010), respectively, the total frequency of NAT2 non-slow metabolism genotype was 76.66% (3074/4010); the total frequencies of NAT2 fast and slow metabolism alleles were 51.19% (4096/8002) and 48.81% (3906/8002), respectively. Using 3SNP method, the sensitivity and specificity of NAT2 slow metabolism genotype inferring were 99.92% (1249/1250) and 99.81% (4190/4198), and were 100.00% (1484/1484) and 99.92% (3961/3964) in NAT2 fast metabolism genotype inferring. Using 2SNP method, the sensitivity and specificity of in NAT2 slow metabolism genotype inferring were 99.52% (1194/1250)and 98.36% (4129/4198); and in NAT2 fast metabolism genotype inferring were 93.19% (1383/1484) and 96.01% (3806/3964). There was no significant difference in the sensitivity of NAT2 slow metabolism genotypes inferred by 3SNP and 2SNP method (χ2=0.189, P=0.664), and there was high consistency between the two methods (Kappa=0.932). The sensitivity of 3SNP method in inferring of NAT2 fast metabolism genotype was higher than that of 2SNP method (χ2=10.973, P=0.001). Conclusion: Non-slow metabolic genotypes constitute the majority of NAT2 metabolic genotypes in Chinese population, and the efficiency of 3SNP method was better than 2SNP method in inferring of NAT2 genotypes.
Keywords:
本文引用格式
王宁, 郑璐瑶, 孟秀娟, 刘海婷, 丁杨明, 姚蓉, 郭少晨, 陆宇.
WANG Ning, ZHENG Lu-yao, MENG Xiu-juan, LIU Hai-ting, DING Yang-ming, YAO Rong, GUO Shao-chen, LU Yu.

开放科学(资源服务)标识码(OSID)的开放科学计划以二维码为入口,提供丰富的线上扩展功能,包括作者对论文背景的语音介绍、该研究的附加说明、与读者的交互问答、拓展学术圈等。读者“扫一扫”此二维码即可获得上述增值服务。
N-乙酰基转移酶2(N-acetyltransferase-2,NAT2)是人体内一种重要的Ⅱ相代谢酶,主要在肝脏及肠道上皮中表达,参与体内多种物质的代谢过程[1]。由于基因多态性的存在,个体NAT2代谢能力存在明显差异,可分为NAT2快、中间及慢代谢型[2]。研究证实,人群中不同NAT2代谢型与肿瘤、帕金森病等多种疾病及药物不良反应的发生和发展相关,发病机制考虑与NAT2慢乙酰化导致的机体毒性物质蓄积有关[3⇓⇓⇓-7]。2021年11月发布的《结核病患者N-乙酰基转移酶2编码基因多态性检测与异烟肼合理用药专家共识》明确指出NAT2代谢型与抗结核药物异烟肼的疗效与不良反应有关,在患者接受异烟肼抗结核治疗时确定其NAT2基因型对患者的精准化治疗至关重要[8]。
目前国内外结核病研究领域NAT2基因多态性研究中大多以检测NAT2中特定单核苷酸多态性(single nucleotide polymorphism,SNP)位点作为确定NAT2基因型的依据,常见的检测位点为341T→C(或481C→T)、590G/A、857G/A,分别对应*5、*6、*7等位基因,上述3种等位基因可解释中国人群中大部分的慢乙酰化代谢类型[10]。3SNP法采用341T→C、590G→A、857G→A等3个SNP位点对NAT2基因型进行推断,2SNP法利用2个SNP位点(282C→T、341T→C)推断NAT2基因型。Hein和Doll[11]报道4SNP法(191G→A、341T→C、590G→A、857G→A)推断NAT2基因型的准确性与7SNP法相当,优于tagSNP(rs1495741)、2SNP(282C→T和341T→C)及3SNP法(341T→C、590G→A、857G→A)。由于rs180127919(191G→A)位点突变仅存在于非洲人群中,因此,其研究中4SNP法在中国人群NAT2基因型推断时实质上等同于3SNP法。Selinski等[12]发现2SNP法推断NAT2基因型的效能与经典的7SNP法相当,优于tagSNP法。在中国人群中NAT2不同推断方法效能的比较研究尚未见报道,笔者对已发表的包含中国人群NAT2基因型信息的文献进行了检索,构建了中国人群NAT2基因型数据库,并对不同NAT2基因型推断方法的效能进行评价。
材料和方法
1.文献检索:对包含中国人群NAT2基因多态性数据的文献进行检索,检索范围包括Medline、PubMed、Embase、维普中文科技期刊数据库、中国知网和万方医学网等数据库,检索时限为数据库建库至2021年12月1日,同时对纳入文献的参考文献进一步手工检索。英文检索词:NAT2、N-acetyltransferase、polymorphism、China或Chinese,以及这些词的同义词或扩展词;中文检索词:NAT2、基因多态性、中国,以及这些词的同义词或扩展词。
2.文献纳入及排除标准:(1)纳入标准:①NAT2基因多态性检测方法为PCR直接测序法或至少检测NAT2基因第2外显子6个SNP位点(rs1041983、rs1801280、rs1799929、rs1799930、rs1208、rs1799931);②研究结果NAT2基因多态性数据中包含亚型(如*6A、*7B等)信息及对应频数信息;③如遇同一项研究阶段结果发表在不同期刊的情况,则对数据进行合并、整理,选择包含内容详细、数据广泛的研究。(2)排除标准:①文献结果只报道NAT2快、慢代谢基因型而未报道具体NAT2基因型(双体型)及亚型数据;②研究人群不在中国境内。
3.文献数据评价及处理:使用Newcastle-Ottawa Scale(NOS)评分表对纳入的文献进行质量评价和风险评估。提取文献中NAT2基因型及等位基因信息,重建单项研究NAT2基因型数据库并利用Phase 2.1软件[13⇓-15]进行单体型和双体型重建及验证,对于文献中与软件基因型推测不符的数据进行分析和修正。NAT2等位基因和基因型分型标准参考人类NAT2等位基因库(
4.统计学处理:不同研究的NAT2基因型及等位基因分布以“频数和频率(%)”描述,通过WPS电子表格整理数据。不同NAT2基因型推断方法(3SNP法及2SNP法[11])性能评价指标包括敏感度、特异度、阳性预测值、阴性预测值、准确度,推断方法效能的比较采用McNemar检验和Kappa一致性检验,以P<0.05为差异有统计学意义。
结果
图1
表1 纳入研究文献信息汇总
| 发表时间 | 期刊 | 单位 | 研究对 象数量 | 民族 | 人群构成 | NAT2基因多 态性检测方法 | 研究编号 |
|---|---|---|---|---|---|---|---|
| 2011年[18] | 中国防痨杂志 | 广州市胸科医院 | 155 | 汉族 | 结核病患者 | PCR测序 | 广州-2011 |
| 2012年[16] | Clinical and Experimental Pharmacology and Physiology | 解放军第309医院 | 208 | 不明确 | 结核病患者 | PCR测序 | 北京-2012 |
| 2006年[4] | Disease Markers | 中南大学附属湘雅医院 | 294 | 汉族 | 肺癌患者及健康对照者 | PCR-RFLP | 长沙-2006 |
| 2012年[20] | Frontiers in Bioscience (Elite edition) | 中国科学院上海分院及上海市疾病预防控制中心 | 336a | 汉族 | 膀胱癌患者及健康对照者 | PCR-RFLP | 上海-2012 |
| 2015年[17] | 中华传染病杂志 | 复旦大学附属华山医院和上海交通大学医学院附属同仁医院 | 108 | 汉族 | 结核病患者 | PCR测序 | 上海-2015 |
| 2016年[5] | Oncotarget | 华南理工大学等 | 951b | 不明确 | 膀胱癌患者及健康对照者 | iPLEX Gold Assay | 上海-2016 |
| 2016年[23] | Journal of the Chinese Medical Association | 中国台湾台北荣民总医院 | 736 | 不明确 | 胃癌患者及健康对照者 | SNP特异 性PCR | 台北-2016 |
| 2009年[19] | Cancer Detection and Prevention | 郑州大学第一附属医院 | 420 | 汉族 | 膀胱癌患者及健康对照者 | PCR-RFLP | 郑州-2009 |
| 2021年[21] | Acta Medica Mediterranea | 广西医科大学第一附属医院等 | 2091 | 汉族 | 急性髓系白血病(非M3)患者及健康对照者 | SNaPshot | 南宁-2021 |
| 2004年[22] | Acta Pharmacologica Sinica | 中国科学院上海分院等 | 163 | 汉族 | 老年性痴呆患者及健康对照者 | PCR-RFLP | 上海-2004 |
注 a:2例检测出现*14A,*14等位基因只有非洲人群携带,统计时将这2例删除。 b:951例中12例未明确基因亚型;PCR-RFLP:聚合酶链式反应-限制性片段长度多态分析技术;iPLEX Gold Assay:基于MassARRAY平台的iPLEX Gold检测
2.纳入文献风险偏倚评价:使用NOS评分表对纳入的文献进行质量评价和风险评估。量表共分为3个主要评价指标,分别为研究对象选择、组间可比性、暴露因素测量。每项下分别有4、2、3个小项,根据文献内容是否符合分别赋值,最高为9★,得分越高,文献质量越高,纳入文献评价情况见表2。
表2 纳入文献的偏差风险和质量评估
| 研究编号 | 研究对象选择 | 组间可比性 | 暴露因素测量 |
|---|---|---|---|
| 广州-2011a | - | - | - |
| 北京-2012 | ★★★ | ★ | ★★★ |
| 长沙-2006 | ★★★★ | ★★ | ★★★ |
| 上海-2012 | ★★★★ | ★ | ★★ |
| 上海-2015 | ★★★ | - | ★★★ |
| 上海-2016 | ★★★★ | ★ | ★★★ |
| 台北-2016 | ★★★ | ★★ | ★★ |
| 郑州-2009 | ★★★★ | ★★ | ★★★ |
| 南宁-2021 | ★★★ | ★ | ★★★ |
| 上海-2004 | ★★★★ | ★ | ★★★ |
注 采用文献质量评价量表(Newcastle-Ottawa Scale)进行评价; a:广州-2011研究为横断面研究,未使用评分表进行评价
3.文献中NAT2基因型及等位基因信息提取及整理:10篇文献中3篇文献NAT2基因型分型采用直接测序法,7篇采用间接方法检测至少6个SNP位点的多态性并对个体的NAT2基因型进行推断。利用7篇文献中个体的NAT2基因型(双体型)信息重建各自单项研究NAT2基因型数据,并使用Phase 2.1软件验证原文献的推测结果。
在上海-2012研究[20]中检测到*14A等位基因,查询美国国家生物技术信息中心SNP数据库及中国汉族人群基因组数据库,*14A等位基因对应的rs1801279位点仅在非洲裔人群具有多态性,中国人群此位点全部为GG型,在整理数据时将该研究中的这2例删除。
在上海-2016研究[5]中,共有477例中间代谢型,根据Phase 2.1基因型推断结果,分别将477例推断为*4/*5B(31例)、*4/*6A(261例)及*4/*7B(185例)。该研究中有12例未能明确基因亚型,仅能判断为快代谢及慢代谢等位基因杂合个体,在计算人群NAT2基因型分布时纳入这12例,由于不能确定SNP位点多态性信息,评估不同NAT2分型方法及统计不同等位基因频率时未纳入这12例中间代谢型个体。
在长沙-2006研究[4]中,NAT2分型结果汇总表中,共有3种基因型无法确定基因亚型,分别是NAT2*6A/282.481、NAT2*6B/282.481及NAT2*6E/282.481,通过查询人类NAT2基因数据库(最后更新2016年4月18日),未查询到同时携带282C→T与481C→T的NAT2等位基因,且即使理论上存在282C→T与481C→T共同突变的等位基因,由于此2个位点都是同义突变,带有282C→T与481C→T的等位基因也应该是NAT2快代谢等位基因。利用Phase 2.1软件对该研究NAT2基因型数据进行单体型及双体型重建,上述3种基因型重新推断为*13/*6N、*4/*6N、*11/*6N。由于3种基因型都是快代谢及慢代谢等位基因杂合子,3种基因型均推断为NAT2中间代谢基因型。
剩余4项研究中,经Phase 2.1软件推断结果与研究汇报推断结果一致。
4.纳入文献中对照组NAT2基因型及等位基因信息汇总:对上述整理后的数据进行汇总,提取单个研究中对照组NAT2基因型及等位基因数据(广州-2011研究为结核病患者,该研究所有数据纳入汇总)构建中国人群NAT2基因型数据库,数据库包含4010例个体的基因型数据汇总信息。(1)汇总数据中NAT2快代谢基因型、中间代谢基因型、慢代谢基因型总体频率分别为25.79%(1034/4010)、50.87%(2040/4010)、23.34%(936/4010),NAT2非慢代谢基因型总体频率为76.66%(3074/4010),具体见表3。(2)汇总数据中NAT2快代谢等位基因包括*4、*13、*11A、*12A、*12B、*12C,NAT2快代谢等位基因总体携带频率为51.19%(4096/8002)。其中,*4等位基因占全部快代谢等位基因的96.92%(3970/4096);汇总数据中慢代谢等位基因包括*5、*6、*7、*10、*19,NAT2慢代谢等位基因总体携带频率为48.81%(3906/8002),其中*5、*6、*7等位基因占所有慢代谢等位基因的99.90%(3902/3906),具体见表4。北京-2012研究[16]在北方人群中检测到*10及*19等位基因,在该研究人群中的携带率均为0.93%(2/214)。
表3 纳入研究文献中NAT2基因型分布情况
| 研究编号 | NAT2快代谢基因型 | NAT2中间代谢基因型 | NAT2慢代谢基因型 | 合计 |
|---|---|---|---|---|
| 广州-2011 | 36(23.3) | 85(54.8) | 34(21.9) | 155 |
| 北京-2012 | 40(37.4) | 54(50.5) | 13(12.1) | 107 |
| 长沙-2006 | 47(23.9) | 112(56.9) | 38(19.2) | 197 |
| 上海-2012 | 102(33.4) | 148(48.5) | 55(18.1) | 305 |
| 上海-2015 | 36(40.9) | 46(52.3) | 6(6.8) | 88 |
| 上海-2016 | 137(29.0) | 258(54.5)a | 78(16.5) | 473 |
| 上海-2004 | 37(33.0) | 61(54.5) | 14(12.5) | 112 |
| 郑州-2009 | 72(34.0) | 112(52.8) | 28(13.2) | 212 |
| 台北-2016 | 108(29.3) | 199(54.1) | 61(16.6) | 368 |
| 南宁-2021 | 419(21.0) | 965(48.4) | 609(30.6) | 1993 |
| 合计 | 1034(25.8) | 2040(50.9) | 936(23.3) | 4010 |
注 表中括号外数值为基因型频数,括号内数值为基因型频率(%); a:上海-2016研究包含未明确分型的9例NAT2中间代谢基因型
表4 纳入研究文献中NAT2等位基因分布情况
| 等位基因 | 分类 | 单体型 | 广州-2011 | 北京-2012 | 上海-2015 | 长沙-2006 | 上海-2012 | 郑州-2009 | 上海-2016 | 台北-2016 | 南宁-2021 | 上海-2004 | 合计 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| *4 | R | CTCGAG | 157(50.65) | 128(59.81) | 115(65.34) | 178(45.18) | 339(55.57) | 251(59.20) | 521(56.14) | 412(55.98) | 1737(43.58) | 132(58.93) | 3970(49.61) |
| *13 | R | TTCGAG | 0(0.00) | 2(0.93) | 3(1.70) | 22(5.58) | 9(1.48) | 2(0.47) | 2(0.22) | 0(0.00) | 66(1.66) | 3(1.34) | 109(1.36) |
| *11A | R | CTTGAG | 0(0.00) | 0(0.00) | 0(0.00) | 3(0.76) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 3(0.04) |
| *12A | R | CTCGGG | 0(0.00) | 4(1.87) | 0(0.00) | 0(0.00) | 0(0.00) | 3(0.71) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 7(0.09) |
| *12B | R | TTCGGG | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 4(0.66) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 4(0.05) |
| *12C | R | CTTGGG | 0(0.00) | 0(0.00) | 0(0.00) | 3(0.76) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 3(0.04) |
| *6A | S | TTCAAG | 89(28.71) | 34(15.89) | 14(7.95) | 78(19.80) | 138(22.62) | 87(20.52) | 222(23.92) | 184(25.00) | 1264(31.71) | 46(20.54) | 2156(26.94) |
| *7B | S | TTCGAA | 44(14.19) | 36(16.82) | 35(19.89) | 70(17.77) | 61(10.00) | 63(14.86) | 152(16.38) | 117(15.90) | 745(18.69) | 38(16.96) | 1361(17.01) |
| *5B | S | CCTGGG | 15(4.84) | 0(0.00) | 2(1.14) | 11(2.79) | 21(3.44) | 10(2.36) | 30(3.23) | 20(2.72) | 174(4.37) | 4(1.79) | 287(3.59) |
| *6B | S | CTCAAG | 0(0.00) | 0(0.00) | 1(0.57) | 14(3.55) | 32(5.25) | 1(0.24) | 0(0.00) | 3(0.41) | 0(0.00) | 0(0.00) | 51(0.64) |
| *7A | S | CTCGAA | 0(0.00) | 5(2.34) | 0(0.00) | 9(2.28) | 6(0.98) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 20(0.25) |
| *5A | S | CCTGAG | 2(0.65) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 7(1.65) | 1(0.11) | 0(0.00) | 0(0.00) | 0(0.00) | 10(0.12) |
| *5C | S | CCCGGG | 3(0.97) | 0(0.00) | 0(0.00) | 2(0.51) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 5(0.06) |
| *5D | S | CCCGAG | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 1(0.45) | 1(0.01) |
| *6J | S | TTCAAA | 0(0.00) | 1(0.47) | 6(3.41) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 7(0.09) |
| *6N | S | TTTAAG | 0(0.00) | 0(0.00) | 0(0.00) | 4(1.02) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 4(0.05) |
| *10a | S | CTCGAG | 0(0.00) | 2(0.93) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 2(0.02) |
| *19a | S | CTCGAG | 0(0.00) | 2(0.93) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 0(0.00) | 2(0.02) |
注 表中括号外数值为等位基因频数,括号内数值为等位基因频率(%); a:由于*10和*19等位基因在常规6个单核苷酸多态性位点无突变,6SNP检测法检测时单体型与*4单体型无差别;R:快代谢等位基因;S:慢代谢等位基因
5.不同方法推断NAT2基因型效能:基于10篇文献的所有能够获得精确基因型(双体型)的NAT2多态性数据,重建包含5448例NAT2基因型信息数据库(表5),基于此数据库,对3SNP及2SNP法推断NAT2代谢基因型的效能进行评价。
表5 3SNP法及2SNP法推断NAT2基因型结果
| 基因型 | 频数 | NAT2实际基因型 | 6SNP位点多态性 | 3SNP法推断基因型 | 2SNP法推断基因型 |
|---|---|---|---|---|---|
| *4/*4 | 1366 | R | CC TT CC GG AA GG | R | R |
| *4/*12A | 13 | R | CC TT CC GG AG GG | R | R |
| *4/*12B | 3 | R | CT TT CC GG AG GG | R | I |
| *4/*13A | 88 | R | CT TT CC GG AA GG | R | I |
| *13A/*13A | 10 | R | TT TT CC GG AA GG | R | S |
| *4/*11A | 4 | R | CC TT CT GG AA GG | R | R |
| *4/*5A | 6 | I | CC CT CT GG AA GG | I | I |
| *4/*5B | 178 | I | CC CT CT GG AG GG | I | I |
| *4/*5C | 6 | I | CC CT CC GG AG GG | I | I |
| *4/*5D | 1 | I | CC CT CC GG AA GG | I | I |
| *4/*6A | 1452 | I | CT TT CC AG AA GG | I | I |
| *4/*6B | 139 | I | CC TT CC AG AA GG | I | R |
| *4/*6J | 8 | I | CT TT CC AG AA AG | S | I |
| *4/*6N | 1 | I | CT TT CT AG AA GG | I | I |
| *4/*7A | 7 | I | CC TT CC GG AA AG | I | R |
| *4/*7B | 838 | I | CT TT CC GG AA AG | I | I |
| 基因型 | 频数 | NAT2实际基因型 | 6SNP位点多态性 | 3SNP法推断基因型 | 2SNP法推断基因型 |
| *4/*10 | 2 | I | CC TT CC GG AA GG | R | R |
| *4/*19 | 1 | I | CC TT CC GG AA GG | R | R |
| *6A/*11 | 1 | I | CT TT CT AG AA GG | I | I |
| *7A/*11A | 2 | I | CC TT CT GG AA AG | I | R |
| *7A/*12B | 4 | I | CT TT CC GG AG AG | I | I |
| *7A/*13A | 2 | I | CT TT CC GG AA AG | I | I |
| *6A/*13 | 35 | I | TT TT CC AG AA GG | I | S |
| *6A/*12A | 3 | I | CT TT CC AG AG GG | I | I |
| *7B/*13 | 18 | I | TT TT CC GG AA AG | I | S |
| *5B/*13 | 4 | I | CT CT CT GG AG GG | I | S |
| *7B/*12C | 3 | I | CT TT CT GG AG AG | I | I |
| *13/*6N | 2 | I | TT TT CT AG AA GG | I | S |
| *11A/*6N | 1 | I | CT TT TT AG AA GG | I | I |
| *5A/*5B | 9 | S | CC CC TT GG AG GG | S | S |
| *5A/*6A | 6 | S | CT CT CT AG AA GG | S | S |
| *5B/*5B | 9 | S | CC CC TT GG GG GG | S | S |
| *5B/*6A | 93 | S | CT CT CT AG AG GG | S | S |
| *5B/*7B | 70 | S | CT CT CT GG AG AG | S | S |
| *5C/*6A | 1 | S | CT CT CC AG AG GG | S | S |
| *6A/*6A | 374 | S | TT TT CC AA AA GG | S | S |
| *6A/*6B | 38 | S | CT TT CC AA AA GG | S | I |
| *6A/*7B | 482 | S | TT TT CC AG AA AG | S | S |
| *6A/*19 | 1 | S | CT TT CC AG AA GG | I | I |
| *6B/*6B | 2 | S | CC TT CC AA AA GG | S | R |
| *6B/*7A | 4 | S | CC TT CC AG AA AG | S | R |
| *6B/*7B | 4 | S | CT TT CC AG AA AG | S | I |
| *6J/*7B | 1 | S | TT TT CC AG AA AA | S | S |
| *7A/*7A | 1 | S | CC TT CC GG AA AA | S | R |
| *7A/*7B | 6 | S | CT TT CC GG AA AA | S | I |
| *7B/*7B | 149 | S | TT TT CC GG AA AA | S | S |
注 SNP:单核苷酸多态性;R:NAT2快代谢基因型;I:NAT2中间代谢基因型;S:NAT2慢代谢基因型
3SNP法采用341T→C、590G→A、857G→A等3个SNP位点对NAT2基因型进行推断。借鉴文献报道中采用的积分法,每个位点如果为野生型纯合子,则积0分,如果为杂合子则积1分,突变纯合子则积2分,将上述3个位点所得积分相加,如果总分为0分,则推断为NAT2快代谢型,如果总分为1分,则推断为NAT2中间代谢型,积分≥2分,则推断为NAT2慢代谢型。3SNP法推断NAT2基因型共有4种基因型出现错误,分别是*4/*6J、*4/*10、*4/*19、*6A/*19,总体推断错误率为0.22%(12/5448)。3SNP法推断NAT2慢代谢基因型的敏感度、特异度、阳性预测值、阴性预测值、准确度分别为99.92%、99.81%、99.36%、99.98%、99.83%;推断NAT2快代谢基因型的敏感度、特异度、阳性预测值、阴性预测值、准确度分别为100.00%、99.92%、99.80%、100.00%、99.94%(表6,7)。
表6 3SNP法推断NAT2慢代谢基因型效能分析
| 3SNP法 推断 | NAT2基因型频数 | 敏感度 (%) | 特异度 (%) | 阳性预测值 (%) | 阳性预测值 (%) | 准确度 (%) | |
|---|---|---|---|---|---|---|---|
| S | R+I | ||||||
| S | 1249 | 8 | 99.92 | 99.81 | 99.36 | 99.98 | 99.83 |
| R+I | 1 | 4190 | |||||
| 合计 | 1250 | 4198 | |||||
注 SNP:单核苷酸多态性;R:NAT2快代谢基因型;I:NAT2中间代谢基因型;S:NAT2慢代谢基因型;敏感度=真阳性数/(真阳性数+假阴性数)×100%,特异度=真阴性数/(真阴性数+假阳性数)×100%,阳性预测值=真阳性数/(真阳性数+假阳性数)×100%,阴性预测值=真阴性数/(真阴性数+假阴性数)×100%,准确度=(真阳性数+真阴性数)/总数×100%
表7 3SNP法推断NAT2快代谢基因型效能分析
| 3SNP法 推断 | NAT2基因型频数 | 敏感度 (%) | 特异度 (%) | 阳性预测值 (%) | 阳性预测值 (%) | 准确度 (%) | |
|---|---|---|---|---|---|---|---|
| R | S+I | ||||||
| R | 1484 | 3 | 100.00 | 99.92 | 99.80 | 100.00 | 99.94 |
| S+I | 0 | 3961 | |||||
| 合计 | 1484 | 3964 | |||||
注 SNP:单核苷酸多态性;R:NAT2快代谢基因型;I:NAT2中间代谢基因型;S:NAT2慢代谢基因型;敏感度=真阳性数/(真阳性数+假阴性数)×100%,特异度=真阴性数/(真阴性数+假阳性数)×100%,阳性预测值=真阳性数/(真阳性数+假阳性数)×100%,阴性预测值=真阴性数/(真阴性数+假阴性数)×100%,准确度=(真阳性数+真阴性数)/总数×100%
2SNP法利用2个SNP位点(282C→T、341T→C)推断NAT2基因型。每个位点如果为野生型纯合子,则积0分,如果为杂合子则积1分,突变纯合子则积2分,将上述3个位点所得积分相加,总分为0分推断为NAT2快代谢基因型,总分为1分推断为NAT2中间代谢基因型,积分≥2分推断为NAT2慢代谢基因型。2SNP法推断NAT2基因型共有19种基因型出现推断错误,总体推断错误率为6.74%(367/5448)。2SNP法推断NAT2慢代谢基因型的敏感度、特异度、阳性预测值、阴性预测值、准确度分别为99.52%、98.36%、94.54%、98.66%、97.71%;推断NAT2快代谢基因型的敏感度、特异度、阳性预测值、阴性预测值、准确度分别为93.19%、96.01%、89.75%、97.41%、95.25%(表8,9)。
表8 2SNP法推断NAT2慢代谢基因型效能分析
| 2SNP法 推断 | NAT2基因型频数 | 敏感度 (%) | 特异度 (%) | 阳性预测值 (%) | 阳性预测值 (%) | 准确度 (%) | |
|---|---|---|---|---|---|---|---|
| S | R+I | ||||||
| S | 1194 | 69 | 99.52 | 98.36 | 94.54 | 98.66 | 97.71 |
| R+I | 56 | 4129 | |||||
| 合计 | 1250 | 4198 | |||||
注 SNP:单核苷酸多态性;R:NAT2快代谢基因型;I:NAT2中间代谢基因型;S:NAT2慢代谢基因型;敏感度=真阳性数/(真阳性数+假阴性数)×100%,特异度=真阴性数/(真阴性数+假阳性数)×100%,阳性预测值=真阳性数/(真阳性数+假阳性数)×100%,阴性预测值=真阴性数/(真阴性数+假阴性数)×100%,准确度=(真阳性数+真阴性数)/总数×100%
表9 2SNP法推断NAT2快代谢基因型效能分析
| 2SNP法 推断 | NAT2基因型频数 | 敏感度 (%) | 特异度 (%) | 阳性预测值 (%) | 阳性预测值 (%) | 准确度 (%) | |
|---|---|---|---|---|---|---|---|
| R | S+I | ||||||
| R | 1383 | 158 | 93.19 | 96.01 | 89.75 | 97.41 | 95.25 |
| S+I | 101 | 3806 | |||||
| 合计 | 1484 | 3964 | |||||
注 SNP:单核苷酸多态性;R:NAT2快代谢基因型;I:NAT2中间代谢基因型;S:NAT2慢代谢基因型;敏感度=真阳性数/(真阳性数+假阴性数)×100%,特异度=真阴性数/(真阴性数+假阳性数)×100%,阳性预测值=真阳性数/(真阳性数+假阳性数)×100%,阴性预测值=真阴性数/(真阴性数+假阴性数)×100%,准确度=(真阳性数+真阴性数)/总数×100%
将3SNP法及2SNP法推断NAT2快、慢代谢基因型的效能进行对比。经McNemer检验,两种方法推断NAT2慢代谢基因型敏感度的差异无统计学意义(χ2=0.189,P=0.664),具有较高的一致性(Kappa=0.932,P<0.01)。两种方法推断NAT2快代谢基因型敏感度的差异有统计学意义(χ2=10.973,P=0.001),3SNP法推断NAT2快代谢基因型时优于2SNP法。
讨论
本研究纳入10项研究,重建的NAT2数据库在一定程度上可以反映中国人群NAT2基因型构成情况。10项研究中对照组共4010例,非慢代谢基因型占到了所有人群的76.7%,快、慢等位基因分别占51.19%及48.81%。在中国人群中,NAT2基因型分布以非慢代谢型为主。
除了常见的NAT2慢代谢等位基因*5、*6、*7外,在北京-2012[16]研究中检测到*10及*19等位基因。*19等位基因最早由日本学者发现[24],190C→T(rs1805158)突变使NAT2基因第64位的精氨酸变成了色氨酸,导致NAT2酶活性的下降。通过在中国汉族基因组数据库查询,rs1805158位点在我国汉族人群中碱基T总体携带率为0.146%,在北京、河南、江苏、贵州、陕西5个地市均检测到碱基T携带者,携带率分别为0.12%、0.089%、0.209%、2.08%、0.059%。*10等位基因对应的是rs72554617(499G→A),该突变使NAT2基因第167位的谷氨酸变成了赖氨酸,导致NAT2酶活性的下降。rs72554617位点在我国汉族人群中碱基A总体携带率为0.049%,在北京、上海、陕西、陕西、河南等9个地市均检测到碱基A携带者,以安徽省携带率最高(0.45%),其余地市携带率均低于0.15%。
采用既往文献中报道的3SNP积分法对重建数据库中的样本进行推断,所有46种NAT2基因型中,共有4种基因型推断错误,分别是*4/*6J、*4/*10、*4/*19、*6A/*19,总体推断错误率为0.22%。错误原因分为2类,其中,*10、*19等位基因存在499G→A和190C→T突变,这使得在使用3SNP方法对*4/*10、*4/*19基因型推断时,将中间代谢型错误地推断为快代谢型,而*6A/*19慢代谢型推断为中间代谢型。另一类推断错误是由于*6J等位基因的存在,基因型为*4/*6J的个体3SNP推断法积分为2分,3SNP法将该种基因型推断为慢代谢型。针对此种情况,如果受检者通过3SNP法检测结果为TT、AG、AG,则该个体可能的基因型为*4/*6J或者*6/*7,其抗结核治疗异烟肼用量可根据异烟肼血药浓度检测结果进行调整。
当SNP检测对341T→C、590G→A、857G→A等3个位点检测结果为CT、AG、GG或CT、GG、AG或TT、AG、AG或CT、AG、AG等4种情况时,理论上可能NAT2基因型为中间代谢型或者慢代谢型。但在本研究构建的数据库中仅出现*4/*6J这一种基因型,其他理论上存在的3种检测结果在纳入的3项研究中并未检测到。另外,笔者进一步查询了人类NAT2等位基因库,并未发现341T→C、590G→A、857G→A等3个位点同时为突变位点的NAT2等位基因。因此,如果样本检测为CT、AG、AG,3SNP法计算得分为3分,则按照目前人类NAT2等位基因库的数据推断该个体可确定为NAT2慢代谢型。
采用既往文献中报道的2SNP积分法对数据库中的样本进行推断,所有46种NAT2基因型中,共有19种基因型出现错误,总体推断错误率为6.74%,远高于3SNP法的推断错误率(0.22%)。2SNP法推断NAT2基因型的基础是SNP位点590G→A和857G→A与282C→T存在连锁不平衡,人群中282C→T一般伴随590G→A或857G→A中的一种出现。因此,当个体中检测到282C→T时,可以认为该个体携带590G→A或857G→A,此2种突变与*6及*7相对应。但在中国人群中,根据本研究结果看,282C→T与590G→A或857G→A之间的关联强度并不高,282C→T也与*12或*13相关联。因此,2SNP法会将携带*13或*12等位基因的个体错误推断为携带*6或*7等位基因,导致了较高的推断错误率。2SNP法推断性能在不同人群中存在较大差异,考虑与不同人群*13或*12等位基因携带比例有关,在*12及*13等位基因携带比例较高的人群中,2SNP法推断NAT2基因型效能较差。
笔者对3SNP及2SNP法推断NAT2基因型的效能进行了比较。在中国人群中推断NAT慢代谢基因型时,3SNP法与2SNP法推断结果一致性较好;但推断NAT2快代谢基因型时,3SNP法推断NAT2基因型总体效能优于2SNP法。
本次纳入研究中有3项研究的NAT2基因多态性检测采用PCR直接测序法,7项研究基于有限SNP检测的结果进行NAT2基因型推断。为了确保数据的准确性,本文在7项研究结果NAT2基因型数据的基础上采用Phase 2.1软件进行了验证,最大限度保证了NAT2基因型推断结果的正确性。个别研究中部分样本未能明确汇报NAT2基因亚型信息,因此,在对NAT2推断方法进行评价时,删除了这部分数据。尽管本研究纳入了5448例样本构建数据库,研究群体涉及北京、上海、广州等多个地区,但相对于我国庞大的人口数量,纳入的样本数据仍不能完全反映中国人群NAT2基因多态性特点。因此,本研究的结论需更大样本的研究验证。另外,纳入研究中研究人群大部分以汉族为主,故尚需明确少数民族人群的NAT2基因型分布情况。
综上所述,本研究中NAT2基因型数据库的建立能够为临床工作中NAT2基因分型工作提供参考。由于不同人群NAT2基因型分布和构成具有地域性差异,在*10、*19等罕见等位基因携带率较高地区,增加对190C→T和499G→A位点的检测可以提高NAT2基因型推断的准确性。综合考虑3SNP法与2SNP法推断NAT2基因分型效能的差异,建议在中国人群中采用3SNP法推断NAT2基因型。
利益冲突 所有作者均声明不存在利益冲突
作者贡献 王宁:酝酿和设计实验、实施研究、采集数据、分析/解释数据、起草文章、统计分析;郑璐瑶:实施研究、采集数据、分析/解释数据、起草文章、统计分析;孟秀娟:分析/解释数据、对文章的知识性内容作批评性审阅、统计分析、指导;刘海婷:实施研究、采集数据、支持性贡献;丁杨明:采集数据、分析/解释数据、对文章的知识性内容作批评性审阅、统计分析;姚蓉:实施研究、采集数据;郭少晨:实施研究、分析/解释数据、对文章的知识性内容作批评性审阅;陆宇:酝酿和设计实验、实施研究、对文章的知识性内容作批评性审阅、获取研究经费、行政和技术及材料支持、指导
参考文献
NAT2基因多态性与疾病遗传易感性的关系
Arylamine N-acetyltransferase acetylation polymorphisms: paradigm for pharmacogenomic-guided therapy-a focused review
N-乙酰基转移酶2基因多态性与膀胱癌的易感性在亚洲人群中的Meta分析
Genetic polymorphisms of phase Ⅱ metabolic enzymes and lung cancer susceptibility in a population of Central South China
Differential association for N-acetyltransferase 2 genotype and phenotype with bladder cancer risk in Chinese population
N-acetyltransferase 2 (NAT2) is involved in both carcinogen detoxification through hepatic N-acetylation and carcinogen activation through local O-acetylation. NAT2 slow acetylation status is significantly associated with increased bladder cancer risk among European populations, but its association in Asian populations is inconclusive.NAT2 acetylation status was determined by both single nucleotide polymorphisms (SNPs) and caffeine metabolic ratio (CMR), in a population-based study of 494 bladder cancer patients and 507 control subjects in Shanghai, China.The CMR, a functional measure of hepatic N-acetylation, was significantly reduced in a dose-dependent manner among both cases and controls possessing the SNP-inferred NAT2 slow acetylation status (all P-values<5.0×10-10). The CMR-determined slow N-acetylation status (CMR<0.34) was significantly associated with a 50% increased risk of bladder cancer (odds ratio = 1.50, 95% confidence interval = 1.10-2.06) whereas the SNP-inferred slow acetylation statuses were significantly associated with an approximately 50% decreased risk of bladder cancer. The genotype-disease association was strengthened after the adjustment for CMR and was primarily observed among never smokers.The apparent differential associations for phenotypic and genetic measures of acetylation statuses with bladder cancer risk may reflect dual functions of NAT2 in bladder carcinogenesis because the former only measures the capacity of carcinogen detoxification pathway while the latter represents both carcinogen activation and detoxification pathways. Future studies are warranted to ascertain the specific role of N- and O-acetylation in bladder carcinogenesis, particularly in populations exposed to different types of bladder carcinogens.
Association of slow acetylator genotype for N-acetyltransferase 2 with familial Parkinson's disease
Epidemiological studies have identified positive family history and exposure to environmental toxins as risk factors for Parkinson's disease (PD). An inherited defect of xenobiotic metabolism could result in increased susceptibility to such toxins. We investigated the frequency of functionally relevant polymorphisms in six detoxification enzymes among patients with PD to elucidate the relation between these polymorphisms and the disease.We obtained brain-tissue samples from 100 patients with apparently sporadic PD and blood samples from 100 living patients with familial PD. For the control group, we extracted DNA from the tissue of 100 pathologically normal brains. The six enzymes analysed in these three groups were: CYP2D6, CYP2E1, NAD(P)H-menadione reductase, glutathione transferases M1 and T1, and N-acetyltransferase 2. We also investigated N-acetyltransferase 2 in 100 blood samples from patients with genetically proven Huntington's disease. We used PCR-based methods and restriction-enzyme analysis to detect polymorphisms.The slow acetylator genotype for N-acetyltransferase 2 was more common in the familial PD group (69%) than in all controls (37%). Even after correction for multiple comparisons, this result remained highly significant (p = 0.002) for familial PD compared with normal controls (odds ratio 3.79 [95% CI 2.08-6.90]) and compared with Huntington's disease (2.45 [1.37-4.38], p = 0.004). The slow acetylator frequency for N-acetyltransferase 2 for sporadic PD was between that for Huntington's disease and familial PD. The frequencies of all the other polymorphisms were similar in the two study groups and the normal control group.We found an association between the slow acetylator genotype for N-acetyltransferase 2 and familial PD. Further studies are needed to investigate the biological relevance of these findings, but slow acetylation could lead to impaired ability of patients with familial PD to handle neurotoxic substances.
The association between the NAT 2 genetic polymorphisms and risk of DILI during anti-TB treatment: a systematic review and meta-analysis
The aim of this study is to evaluate the potential association between N-acetyltransferase type 2 (NAT2) polymorphisms and drug-induced liver injury during anti-TB treatment (AT-DILI).We conducted a systematic review and performed a meta-analysis to clarify the role of NAT2 polymorphism in AT-DILI. PubMed, Medline and EMBASE databases were searched for studies published in English to December 31, 2017, on the association between the NAT2 polymorphism and AT-DILI risk. Outcomes were pooled with random-effects meta-analysis. Details were registered in the PROSPERO register (number: CRD42016051722).Thirty-seven studies involving 1527 cases and 7184 controls were included in this meta-analysis. The overall odds ratio (OR) of AT-DILI associated with NAT2 slow acetylator phenotype was 3.15 (95% CI 2.58-3.84, I = 51.3%, P = 0.000). The OR varied between different ethnic populations, ranging from 6.42 (95% CI 2.41-17.10, I = 2.3%) for the West Asian population to 2.32 (95% CI 0.58-9.24, I = 80.3%) for the European population. Within the slow NAT2 genotype, variation was also observed; NAT2*6/*7 was associated with the highest risk of AT-DILI (OR = 1.68, 95% CI 1.09-2.59) compared to the other slow NAT2 acetylators combined.NAT2 slow acetylation was observed to increase the risk of AT-DILI in tuberculosis patients. Our results support the hypothesis that the slow NAT2 genotype is a risk factor for AT-DILI.© 2018 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.
结核病患者N-乙酰基转移酶2编码基因多态性检测与异烟肼合理用药专家共识
Genetic polymorphism in N-Acetyltransferase (NAT): Population distribution of NAT1 and NAT 2 activity
Genetic analysis of N-acetyltransferase polymorphism in a Chinese population
To study the genetic basis of N-acetylatransferase polymorphism in Chinese.Genotypes in 120 healthy Han volunteers from 19 provinces of China were assayed. The 3 common mutant alleles (M1, M2, M3) and one normal wild-type (WT) allele of the N-acetyltransferase (NAT2) gene were detected by allele-specific polymerase chain reaction technique.The NAT2 allele frequencies in 120 Chinese (WT = 0.625, M1 = 0.0458, M2 = 0.188, M3 = 0.142) were different (P < 0.01). The NAT2 genotype distribution for all detected combinations of NAT2 alleles in 120 Chinese subjects was consisitent with Hardy-Weinberg equilibrium (chi 2 = 7.27, nu = 8, 0.7 > P > 0.5). Fifty subjects (41.7%) were homozygous wildtypes, 50 subjects (41.7%) were heterozygous mutants, and 20 subjects (16.7%) were homozygous mutants.The lower frequency of mutant M1 allele compared with that of Caucasians explains the low frequency of slow acylators in Chinese.
Accuracy of various human NAT2 SNP genotyping panels to infer rapid, intermediate and slow acetylator phenotypes
Genotyping NAT2 with only two SNPs (rs1041983 and rs1801280) outperforms the tagging SNP rs1495741 and is equivalent to the conventional 7-SNP NAT2 genotype
A new statistical method for haplotype reconstruction from population data
Current routine genotyping methods typically do not provide haplotype information, which is essential for many analyses of fine-scale molecular-genetics data. Haplotypes can be obtained, at considerable cost, experimentally or (partially) through genotyping of additional family members. Alternatively, a statistical method can be used to infer phase and to reconstruct haplotypes. We present a new statistical method, applicable to genotype data at linked loci from a population sample, that improves substantially on current algorithms; often, error rates are reduced by > 50%, relative to its nearest competitor. Furthermore, our algorithm performs well in absolute terms, suggesting that reconstructing haplotypes experimentally or by genotyping additional family members may be an inefficient use of resources.
Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation
Although many algorithms exist for estimating haplotypes from genotype data, none of them take full account of both the decay of linkage disequilibrium (LD) with distance and the order and spacing of genotyped markers. Here, we describe an algorithm that does take these factors into account, using a flexible model for the decay of LD with distance that can handle both "blocklike" and "nonblocklike" patterns of LD. We compare the accuracy of this approach with a range of other available algorithms in three ways: for reconstruction of randomly paired, molecularly determined male X chromosome haplotypes; for reconstruction of haplotypes obtained from trios in an autosomal region; and for estimation of missing genotypes in 50 autosomal genes that have been completely resequenced in 24 African Americans and 23 individuals of European descent. For the autosomal data sets, our new approach clearly outperforms the best available methods, whereas its accuracy in inferring the X chromosome haplotypes is only slightly superior. For estimation of missing genotypes, our method performed slightly better when the two subsamples were combined than when they were analyzed separately, which illustrates its robustness to population stratification. Our method is implemented in the software package PHASE (v2.1.1), available from the Stephens Lab Web site.
A comparison of bayesian methods for haplotype reconstruction from population genotype data
In this report, we compare and contrast three previously published Bayesian methods for inferring haplotypes from genotype data in a population sample. We review the methods, emphasizing the differences between them in terms of both the models ("priors") they use and the computational strategies they employ. We introduce a new algorithm that combines the modeling strategy of one method with the computational strategies of another. In comparisons using real and simulated data, this new algorithm outperforms all three existing methods. The new algorithm is included in the software package PHASE, version 2.0, available online (http://www.stat.washington.edu/stephens/software.html).
NAT2 and CYP2E 1 polymorphisms associated with antituberculosis drug-induced hepatotoxicity in Chinese patients
中国汉族结核病患者 N-乙酰基转移酶2基因型与药物性肝损伤以及抗结核疗效的关系
Association of NAT2, GSTM1, GSTT1, CYP2A6, and CYP2A13 gene polymorphisms with susceptibility and clinicopathologic characteristics of bladder cancer in Central China
N-Acetyltransferase 2 genotype, exfoliated urothelial cells and benzidine exposure
N-Acetyltransferase 2 (NAT2) single nucleotide polymorphisms in patients with adult acute myeloid leukemia (NON-M3): A case-control study
N-Acetyltransferase 2 gene polymorphism in a group of senile dementia patients in Shanghai suburb
N-Acetyltransferase 2 (NAT2) genetic variation and the susceptibility to noncardiac gastric adenocarcinoma in Taiwan
Novel allele containing a 190C>T nonsynonymous substitution in the N-acetyltransferase (NAT2) gene
/
| 〈 |
|
〉 |

京公网安备11010202007215号