Chinese Journal of Antituberculosis ›› 2026, Vol. 48 ›› Issue (1): 9-20.doi: 10.19982/j.issn.1000-6621.20250426
• Guideline·Standard·Consensus • Previous Articles Next Articles
Jiangxi Chest Hospital/Jiangxi Provincial Key Laboratory of Tuberculosis , Guangzhou National Laboratory , Chinese Antituberculosis Association
Received:2025-11-03
Online:2026-01-10
Published:2025-12-31
Supported by:CLC Number:
Jiangxi Chest Hospital/Jiangxi Provincial Key Laboratory of Tuberculosis , Guangzhou National Laboratory , Chinese Antituberculosis Association . Expert consensus on the application of host biomarkers for tuberculosis[J]. Chinese Journal of Antituberculosis, 2026, 48(1): 9-20. doi: 10.19982/j.issn.1000-6621.20250426
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20250426
| [1] |
Reid M, Agbassi YJP, Arinaminpathy N, et al. Scientific advances and the end of tuberculosis: a report from the Lancet Commission on Tuberculosis. Lancet, 2023, 402(10411): 1473-1498. doi:10.1016/S0140-6736(23)01379-X.
pmid: 37716363 |
| [2] | GBD 2021 Causes of Death Collaborators. Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990—2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet, 2024, 403(10440): 2100-2132. doi:10.1016/S0140-6736(24)00367-2. |
| [3] | Kumar Gupta R, Noursadeghi M. Blood transcriptomic biomarkers for tuberculosis screening: time to redefine our target populations?. Lancet Glob Health, 2021, 9(6): e736-e737. doi:10.1016/S2214-109X(21)00088-7. |
| [4] | Uzorka JW, Bakker JA, van Meijgaarden KE, et al. Biomarkers to identify Mycobacterium tuberculosis infection among borderline QuantiFERON results. Eur Respir J, 2022, 60(2): 2102665. doi:10.1183/13993003.02665-2021. |
| [5] | Li Z, Hu Y, Wang W, et al. Integrating pathogen- and host-derived blood biomarkers for enhanced tuberculosis diagnosis: a comprehensive review. Front Immunol, 2024, 15: 1438989. doi:10.3389/fimmu.2024.1438989. |
| [6] | Zhuang L, Yang L, Li L, et al. Mycobacterium tuberculosis: immune response, biomarkers, and therapeutic intervention. MedComm (2020), 2024, 5(1): e419. doi:10.1002/mco2.419. |
| [7] | Li Z, Hu Y, Zou F, et al. Assessing the risk of TB progression: Advances in blood-based biomarker research. Microbiol Res, 2025, 292: 128038. doi:10.1016/j.micres.2024.128038. |
| [8] | Phat NK, Tien NTN, Anh NK, et al. Alterations of lipid-related genes during anti-tuberculosis treatment: insights into host immune responses and potential transcriptional biomarkers. Front Immunol, 2023, 14: 1210372. doi:10.3389/fimmu.2023.1210372. |
| [9] | Sinigaglia A, Peta E, Riccetti S, et al. Tuberculosis-Associated MicroRNAs: From Pathogenesis to Disease Biomarkers. Cells, 2020, 9(10): 2160. doi:10.3390/cells9102160. |
| [10] | Du Y, Gao X, Yan J, et al. Relationship between DNA Methy-lation Profiles and Active Tuberculosis Development from Latent Infection: a Pilot Study in Nested Case-Control Design. Microbiol Spectr, 2022, 10(3): e0058622. doi:10.1128/spectrum.00586-22. |
| [11] | Willis CN, Larson SR, Andama A, et al. Engineered Electroac-tive Solutions for Electrochemical Detection of Tuberculosis-Associated Volatile Organic Biomarkers. IEEE Sens J, 2022, 22(4): 2984-2992. doi:10.1109/jsen.2021.3126732. |
| [12] |
Scriba TJ, Fiore-Gartland A, Penn-Nicholson A, et al. Biomarker-guided tuberculosis preventive therapy (CORTIS): a randomised controlled trial. Lancet Infect Dis, 2021, 21(3): 354-365. doi:10.1016/S1473-3099(20)30914-2.
pmid: 33508224 |
| [13] | Noursadeghi M, Gupta RK. New Insights into the Limitations of Host Transcriptional Biomarkers of Tuberculosis. Am J Respir Crit Care Med, 2021, 204(12): 1363-1365. doi:10.1164/rccm.202109-2146ED. |
| [14] |
Goletti D, Lee MR, Wang JY, et al. Update on tuberculosis biomarkers: From correlates of risk, to correlates of active disease and of cure from disease. Respirology, 2018, 23(5): 455-466. doi:10.1111/resp.13272.
pmid: 29457312 |
| [15] |
Wang S, Li Y, Shen Y, et al. Screening and identification of a six-cytokine biosignature for detecting TB infection and discriminating active from latent TB. J Transl Med, 2018, 16(1): 206. doi:10.1186/s12967-018-1572-x.
pmid: 30029650 |
| [16] |
Esmail H, Lai RP, Lesosky M, et al. Characterization of progressive HIV-associated tuberculosis using 2-deoxy-2-[18F]fluoro-D-glucose positron emission and computed tomography. Nat Med, 2016, 22(10): 1090-1093. doi:10.1038/nm.4161.
pmid: 27595321 |
| [17] | Mutavhatsindi H, Manyelo CM, Snyders CI, et al. Baseline and end-of-treatment host serum biomarkers predict relapse in adults with pulmonary tuberculosis. J Infect, 2024, 89(1): 106173. doi:10.1016/j.jinf.2024.106173. |
| [18] | Udomsinprasert W, Sakuntasri W, Jittikoon J, et al. Global DNA hypomethylation of Alu and LINE-1 transposable elements as an epigenetic biomarker of anti-tuberculosis drug-induced liver injury. Emerg Microbes Infect, 2021, 10(1): 1862-1872. doi:10.1080/22221751.2021.1976079. |
| [19] | Rodríguez-Hernández E, Quintas-Granados LI, Flores-Villalva S, et al. Application of antigenic biomarkers for Mycobacterium tuberculosis. J Zhejiang Univ Sci B, 2020, 21(11): 856-870. doi:10.1631/jzus.B2000325. |
| [20] | Ma Z, Ji X, Yang H, et al. Screening and evaluation of Mycobacterium tuberculosis diagnostic antigens. Eur J Clin Microbiol Infect Dis, 2020, 39(10): 1959-1970. doi:10.1007/s10096-020-03951-3. |
| [21] |
Heyckendorf J, Reimann M, Marwitz S, et al. Pathogen-free diagnosis of tuberculosis. Lancet Infect Dis, 2021, 21(8): 1066. doi:10.1016/S1473-3099(21)00337-6.
pmid: 34331877 |
| [22] | Kanabalan RD, Lee LJ, Lee TY, et al. Human tuberculosis and Mycobacterium tuberculosis complex: A review on genetic diversity, pathogenesis and omics approaches in host biomarkers discovery. Microbiol Res, 2021, 246: 126674. doi:10.1016/j.micres.2020.126674. |
| [23] | Berry MP, Graham CM, McNab FW, et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature, 2010, 466(7309): 973-977. doi:10.1038/nature09247. |
| [24] |
Panda S, Morgan J, Cheng C, et al. Identification of differentially recognized T cell epitopes in the spectrum of tuberculosis infection. Nat Commun, 2024, 15(1): 765. doi:10.1038/s41467-024-45058-9.
pmid: 38278794 |
| [25] | Nolt D, Starke JR. Tuberculosis Infection in Children and Adolescents: Testing and Treatment. Pediatrics, 2021, 148(6): e2021054663. doi:10.1542/peds.2021-054663. |
| [26] | Hamada Y, Cirillo DM, Matteelli A, et al. Tests for tuberculosis infection: landscape analysis. Eur Respir J, 2021, 58(5): 2100167. doi:10.1183/13993003.00167-2021. |
| [27] | Cohen A, Mathiasen VD, Schön T, et al. The global prevalence of latent tuberculosis: a systematic review and meta-analysis. Eur Respir J, 2019, 54(3): 1900655. doi:10.1183/13993003.00655-2019. |
| [28] |
Carranza C, Pedraza-Sanchez S, de Oyarzabal-Mendez E, et al. Diagnosis for Latent Tuberculosis Infection: New Alternatives. Front Immunol, 2020, 11: 2006. doi:10.3389/fimmu.2020.02006.
pmid: 33013856 |
| [29] | 中华医学会结核病学分会. 结核分枝杆菌γ-干扰素释放试验及临床应用专家意见(2021年版). 中华结核和呼吸杂志, 2022, 45(2): 143-150. doi:10.3760/cma.j.cn112147-20211110-00794. |
| [30] | 中国防痨协会结核病控制专业分会, 中国防痨协会标准化专业分会, 中国防痨协会老年结核病防治专业分会单位. 结核分枝杆菌感染检测技术应用专家共识. 中国防痨杂志, 2025, 47(7): 813-829. doi:10.19982/j.issn.1000-6621.20250231. |
| [31] | Blauenfeldt T, Villar-Hernández R, García-García E, et al. Diagnostic Accuracy of Interferon Gamma-Induced Protein 10 mRNA Release Assay for Tuberculosis. J Clin Microbiol, 2020, 58(10): e00848-20. doi:10.1128/JCM.00848-20. |
| [32] | Ren W, Ma Z, Li Q, et al. Antigen-specific chemokine profiles as biomarkers for detecting Mycobacterium tuberculosis infection. Front Immunol, 2024, 15: 1359555. doi:10.3389/fimmu.2024.1359555. |
| [33] | Zhao HM, Du R, Li CL, et al. Differential T cell responses against DosR-associated antigen Rv2028c in BCG-vaccinated populations with tuberculosis infection. J Infect, 2019, 78(4): 275-280. doi:10.1016/j.jinf.2018.10.016. |
| [34] | Alvarez AH. Revisiting tuberculosis screening: An insight to complementary diagnosis and prospective molecular approaches for the recognition of the dormant TB infection in human and cattle hosts. Microbiol Res, 2021, 252: 126853. doi:10.1016/j.micres.2021.126853. |
| [35] | Chedid C, Kokhreidze E, Tukvadze N, et al. Relevance of QuantiFERON-TB Gold Plus and Heparin-Binding Hemagglutinin Interferon-γ Release Assays for Monitoring of Pulmonary Tuberculosis Clearance: A Multicentered Study. Front Immunol, 2020, 11: 616450. doi:10.3389/fimmu.2020.616450. |
| [36] | Kim JY, Kang YA, Park JH, et al. An IFN-γ and TNF-α dual release fluorospot assay for diagnosing active tuberculosis. Clin Microbiol Infect, 2020, 26(7): 928-934. doi:10.1016/j.cmi.2019.11.003. |
| [37] |
Nemes E, Abrahams D, Scriba TJ, et al. Diagnostic Accuracy of Early Secretory Antigenic Target-6-Free Interferon-gamma Release Assay Compared to QuantiFERON-TB Gold In-tube. Clin Infect Dis, 2019, 69(10): 1724-1730. doi:10.1093/cid/ciz034.
pmid: 30668657 |
| [38] | Xu M, Lu W, Li T, et al. Sensitivity, Specificity, and Safety of a Novel ESAT6-CFP10 Skin Test for Tuberculosis Infection in China: 2 Randomized, Self-Controlled, Parallel-Group Phase 2b Trials. Clin Infect Dis, 2022, 74(4): 668-677. doi:10.1093/cid/ciab472. |
| [39] | Ding X, Du W, Liu Q, et al. Accuracy of ESAT6-CFP 10 skin test compared with tuberculin skin test in a healthy population: a randomized, blind, parallel controlled phase Ⅲ clinical study. BMC Infect Dis, 2024, 24(1): 1479. doi:10.1186/s12879-024-10302-6. |
| [40] | Xia L, Xu M, Li F, et al. High accuracy of recombinant fusion protein early secretory antigenic target protein 6-culture filtrate protein 10 skin test for the detection of tuberculosis infection: a phase Ⅲ, multi‐centered, double-blind, hospital-based, randomized controlled trial. Int J Infect Dis, 2023, 126: 98-103. doi:10.1016/j.ijid.2022.11.014. |
| [41] | World Health Organization. Rapid communication: TB antigen-based skin tests for the diagnosis of TB infection. Geneva: World Health Organization, 2022. |
| [42] | World Health Organization. WHO consolidated guidelines on tuberculosis. Module 3: diagnosis. Tests for TB infection. Geneva: World Health Organization, 2022. |
| [43] | Yao S, Huang D, Chen CY, et al. CD4+ T cells contain early extrapulmonary tuberculosis (TB) dissemination and rapid TB progression and sustain multieffector functions of CD8+ T and CD3-lymphocytes: mechanisms of CD4+ T cell immunity. J Immunol, 2014, 192(5): 2120-2132. doi:10.4049/jimmunol.1301373. |
| [44] | 《中国防痨杂志》编辑委员会, 中国医疗保健国际交流促进会结核病防治分会基础专业和临床专业学术部. 结核病患者外周血淋巴细胞亚群检测及临床应用专家共识. 中国防痨杂志, 2020, 42(10): 1009-1016. doi:10.3969/j.issn.1000-6621.2020.10.001. |
| [45] | 中国人民解放军总医院第八医学中心全军结核病研究所/全军结核病防治重点实验室/结核病诊疗新技术北京市重点实验室, 《中国防痨杂志》编辑委员会, 中国医疗保健国际交流促进会结核病防治分会基础和临床学部. 活动性结核病患者免疫功能状态评估和免疫治疗专家共识(2021年版). 中国防痨杂志, 2022, 44(1): 9-27. doi:10.19982/j.issn.1000-6621.20210680. |
| [46] | An HR, Bai XJ, Liang JQ, et al. The relationship between absolute counts of lymphocyte subsets and clinical features in patients with pulmonary tuberculosis. Clin Respir J, 2022, 16(5): 369-379. doi:10.1111/crj.13490. |
| [47] | Mi J, Liu Y, Xue Y, et al. The changes and its significance of peripheral blood NK cells in patients with tuberculous meningitis. Front Microbiol, 2024, 15: 1344162. doi:10.3389/fmicb.2024.1344162. |
| [48] | Ahmed MIM, Ntinginya NE, Kibiki G, et al. Phenotypic Changes on Mycobacterium Tuberculosis-Specific CD 4 T Cells as Surrogate Markers for Tuberculosis Treatment Efficacy. Front Immunol, 2018, 9: 2247. doi:10.3389/fimmu.2018.02247. |
| [49] |
Acharya MP, Pradeep SP, Murthy VS, et al. CD38+CD27-TNF-α+ on Mtb-specific CD4+ T Cells Is a Robust Biomarker for Tuberculosis Diagnosis. Clin Infect Dis, 2021, 73(5): 793-801. doi:10.1093/cid/ciab144.
pmid: 34492697 |
| [50] | Luo Y, Xue Y, Mao L, et al. Activation Phenotype of Mycobacterium tuberculosis-Specific CD4+ T Cells Promoting the Discrimination Between Active Tuberculosis and Latent Tuberculosis Infection. Front Immunol, 2021, 12: 721013. doi:10.3389/fimmu.2021.721013. |
| [51] | Rakshit S, Adiga V, Ahmed A, et al. Evidence for the hetero-logous benefits of prior BCG vaccination on COVISHIELDTM vaccine-induced immune responses in SARS-CoV-2 seronegative young Indian adults. Front Immunol, 2022, 13: 985938. doi:10.3389/fimmu.2022.985938. |
| [52] |
Morgan J, Muskat K, Tippalagama R, et al. Classical CD4 T cells as the cornerstone of antimycobacterial immunity. Immunol Rev, 2021, 301(1): 10-29. doi:10.1111/imr.12963.
pmid: 33751597 |
| [53] | Balfour A, Schutz C, Goliath R, et al. Functional and Activation Profiles of Mucosal-Associated Invariant T Cells in Patients With Tuberculosis and HIV in a High Endemic Setting. Front Immunol, 2021, 12: 648216. doi:10.3389/fimmu.2021.648216. |
| [54] | Sun M, Phan JM, Kieswetter NS, et al. Specific CD4+ T cell phenotypes associate with bacterial control in people who ‘resist’ infection with Mycobacterium tuberculosis. Nat Immunol, 2024, 25(8): 1411-1421. doi:10.1038/s41590-024-01897-8. |
| [55] |
Agrawal S, Parkash O, Palaniappan AN, et al. Efficacy of T Regulatory Cells, Th 17 Cells and the Associated Markers in Monitoring Tuberculosis Treatment Response. Front Immunol, 2018, 9: 157. doi:10.3389/fimmu.2018.00157.
pmid: 29472922 |
| [56] | Mohammadnabi N, Shamseddin J, Emadi M, et al. Mycobacterium tuberculosis: The Mechanism of Pathogenicity, Immune Responses, and Diagnostic Challenges. J Clin Lab Anal, 2024, 38(23): e25122. doi:10.1002/jcla.25122. |
| [57] |
Wang Y, Sun Q, Zhang Y, et al. Systemic immune dysregulation in severe tuberculosis patients revealed by a single-cell transcriptome atlas. J Infect, 2023, 86(5): 421-438. doi:10.1016/j.jinf.2023.03.020.
pmid: 37003521 |
| [58] | Nziza N, Cizmeci D, Davies L, et al. Defining Discriminatory Antibody Fingerprints in Active and Latent Tuberculosis. Front Immunol, 2022, 13: 856906. doi:10.3389/fimmu.2022.856906. |
| [59] | 杨松, 郭建琼, 唐神结, 等. 《WHO 2025结核病整合指南模块3:诊断第4版》解读. 国际呼吸杂志, 2025, 45(8): 661-669. doi:10.3760/cma.j.cn131368-20250429-00240. |
| [60] | 《中国防痨杂志》编辑委员会. 现阶段结核抗体检测在我国临床应用的专家共识. 中国防痨杂志, 2018, 40(1): 9-13. doi:10.3969/j.issn.1000-6621.2018.01.004. |
| [61] | 郭静. 结核抗体联合痰涂片检验对肺结核的诊断价值研究. 实验室检测, 2025, 3(18): 256-258. |
| [62] | 中国人民解放军总医院第八医学中心结核病医学部, 《中国防痨杂志》编辑委员会, 中国医疗保健国际交流促进会结核病防治分会基础和临床学部. 结核性腹膜炎多学科诊疗专家共识. 中国防痨杂志, 2025, 47(3): 243-257. doi:10.19982/j.issn.1000-6621.20250025. |
| [63] | 段鸿飞, 陶勇. 《眼内结核诊断规范》团体标准解读. 中国防痨杂志, 2025, 47(3): 258-261. doi:10.19982/j.issn.1000-6621.20240572. |
| [64] | World Health Organization. WHO consolidated guidelines on tuberculosis: Module 3: diagnosis-rapid diagnostics for tuberculosis detection. Geneva: World Health Organization, 2025. |
| [65] | Zhang L, Ma H, Wan S, et al. Mycobacterium tuberculosis latency-associated antigen Rv1733c SLP improves the accuracy of differential diagnosis of active tuberculosis and latent tuberculosis infection. Chin Med J (Engl), 2022, 135(1): 63-69. doi:10.1097/CM9.0000000000001858. |
| [66] | Ramalingam G, Jayaraman S, Khan JM, et al. Exploring recombinant secretory proteins from Mycobacterium tuberculosis to develop a serological platform for tuberculosis diagnosis. Int J Biol Macromol, 2023, 249: 126769. doi:10.1016/j.ijbiomac.2023.126769. |
| [67] |
Moreira M, Ruggiero A, Esposito L, et al. Structural features of HtpGMtb and HtpG-ESAT6Mtb vaccine antigens against tuberculosis: Molecular determinants of antigenic synergy and cytotoxicity modulation. Int J Biol Macromol, 2020, 158: 305-317. doi:10.1016/j.ijbiomac.2020.04.252.
pmid: 32380102 |
| [68] | Li J, Wang Y, Yan L, et al. Novel serological biomarker panel using protein microarray can distinguish active TB from latent TB infection. Microbes Infect, 2022, 24(8): 105002. doi:10.1016/j.micinf.2022.105002. |
| [69] | Grace PS, Dolatshahi S, Lu LL, et al. Antibody Subclass and Glycosylation Shift Following Effective TB Treatment. Front Immunol, 2021, 12: 679973. doi:10.3389/fimmu.2021.679973. |
| [70] |
Lu LL, Chung AW, Rosebrock TR, et al. A Functional Role for Antibodies in Tuberculosis. Cell, 2016, 167(2): 433-443.e14. doi:10.1016/j.cell.2016.08.072.
pmid: 27667685 |
| [71] | Lu LL, Smith MT, Yu KKQ, et al. IFN-γ-independent immune markers of Mycobacterium tuberculosis exposure. Nat Med, 2019, 25(6): 977-987. doi:10.1038/s41591-019-0441-3. |
| [72] | Coppola M, Ottenhoff TH. Genome wide approaches discover novel Mycobacterium tuberculosis antigens as correlates of infection, disease, immunity and targets for vaccination. Semin Immunol, 2018, 39: 88-101. doi:10.1016/j.smim.2018.07.001. |
| [73] | Melkie ST, Arias L, Farroni C, et al. The role of antibodies in tuberculosis diagnosis, prophylaxis and therapy: a review from the ESGMYC study group. Eur Respir Rev, 2022, 31(163): 210218. doi:10.1183/16000617.0218-2021. |
| [74] |
Gebremicael G, Kassa D, Quinten E, et al. Host Gene Expression Kinetics During Treatment of Tuberculosis in HIV-Coinfected Individuals Is Independent of Highly Active Antiretroviral Therapy. J Infect Dis, 2018, 218(11): 1833-1846. doi:10.1093/infdis/jiy404.
pmid: 29982697 |
| [75] |
Singhania A, Verma R, Graham CM, et al. A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection. Nat Commun, 2018, 9(1): 2308. doi:10.1038/s41467-018-04579-w.
pmid: 29921861 |
| [76] | Muwanga VM, Mendelsohn SC, Leukes V, et al. Blood transcriptomic signatures for symptomatic tuberculosis in an African multicohort study. Eur Respir J, 2024, 64(2):2400153. doi:10.1183/13993003.00153-2024. |
| [77] | Alsulaimany FA, Zabermawi NMO, Almukadi H, et al. Transcriptome-Based Molecular Networks Uncovered Interplay Between Druggable Genes of CD8+ T Cells and Changes in Immune Cell Landscape in Patients With Pulmonary Tuberculosis. Front Med (Lausanne), 2021, 8: 812857. doi:10.3389/fmed.2021.812857. |
| [78] | Warsinske H, Vashisht R, Khatri P. Host-response-based gene signatures for tuberculosis diagnosis: A systematic comparison of 16 signatures. PLoS Med, 2019, 16(4): e1002786. doi:10.1371/journal.pmed.1002786. |
| [79] | Roe JK, Thomas N, Gil E, et al. Blood transcriptomic diagnosis of pulmonary and extrapulmonary tuberculosis. JCI insight, 2016, 1(16): e87238. doi:10.1172/jci.insight.87238. |
| [80] |
Zhang X, Zhu M, Hu X. Integrated miRNA and mRNA expression profiling to identify mRNA targets of dysregulated miRNAs in pulmonary tuberculosis. Epigenomics, 2018, 10(8): 1051-1069. doi:10.2217/epi-2018-0028.
pmid: 30052058 |
| [81] | Huang Z, Luo Q, Xiong C, et al. Identification of serum tRNA-derived small RNAs biosignature for diagnosis of tuberculosis. Emerg Microbes Infect, 2025, 14(1): 2459132. doi:10.1080/22221751.2025.2459132. |
| [82] | Pattnaik B, Patnaik N, Mittal S, et al. Micro RNAs as potential biomarkers in tuberculosis: A systematic review. Nonco-ding RNA Res, 2022, 7(1): 16-26. doi:10.1016/j.ncrna.2021.12.005. |
| [83] |
Chang A, Loy CJ, Eweis-LaBolle D, et al. Circulating cell-free RNA in blood as a host response biomarker for detection of tuberculosis. Nat Commun, 2024, 15(1): 4949. doi:10.1038/s41467-024-49245-6.
pmid: 38858368 |
| [84] | Kim CH, Choi G, Lee J. Host Blood Transcriptional Signatures as Candidate Biomarkers for Predicting Progression to Active Tuberculosis. Tuberc Respir Dis (Seoul), 2023, 86(2): 94-101. doi:10.4046/trd.2022.0152. |
| [85] | Shao M, Wu F, Zhang J, et al. Screening of potential biomarkers for distinguishing between latent and active tuberculosis in children using bioinformatics analysis. Medicine (Baltimore), 2021, 100(5): e23207. doi:10.1097/MD.00000000-00023207. |
| [86] |
Porcel JM. Advances in the diagnosis of tuberculous pleuritis. Ann Transl Med, 2016, 4(15): 282. doi:10.21037/atm.2016.07.23.
pmid: 27570776 |
| [87] | Garcia-Zamalloa A, Vicente D, Arnay R, et al. Diagnostic accuracy of adenosine deaminase for pleural tuberculosis in a low prevalence setting: A machine learning approach within a 7-year prospective multi-center study. PLoS One, 2021, 16(11): e0259203. doi:10.1371/journal.pone.0259203. |
| [88] | 黄忠银, 杜娟, 翟侃, 等. 白细胞介素27在结核性胸腔积液和恶性胸腔积液鉴别诊断中的价值. 国际呼吸杂志, 2020, 40(8): 597-603. doi:10.3760/cma.j.cn131368-20191202-01700. |
| [89] |
Suzukawa M, Takeda K, Akashi S, et al. Evaluation of cytokine levels using QuantiFERON-TB Gold Plus in patients with active tuberculosis. J Infect, 2020, 80(5): 547-553. doi:10.1016/j.jinf.2020.02.007.
pmid: 32092390 |
| [90] | Vivekanandan MM, Adankwah E, Aniagyei W, et al. Plasma cytokine levels characterize disease pathogenesis and treatment response in tuberculosis patients. Infection, 2023, 51(1): 169-179. doi:10.1007/s15010-022-01870-3. |
| [91] |
Suárez I, Rohr S, Stecher M, et al. Plasma interferon-γ-inducible protein 10 (IP-10) levels correlate with disease severity and paradoxical reactions in extrapulmonary tuberculosis. Infection, 2021, 49(3): 437-445. doi:10.1007/s15010-020-01541-1.
pmid: 33140838 |
| [92] |
Adankwah E, Nausch N, Minadzi D, et al. Interleukin-6 and Mycobacterium tuberculosis dormancy antigens improve diagnosis of tuberculosis. J Infect, 2021, 82(2): 245-252. doi:10.1016/j.jinf.2020.11.032.
pmid: 33278400 |
| [93] |
Sudbury EL, Clifford V, Messina NL, et al. Mycobacterium tuberculosis-specific cytokine biomarkers to differentiate active TB and LTBI: A systematic review. J Infect, 2020, 81(6): 873-881. doi:10.1016/j.jinf.2020.09.032.
pmid: 33007340 |
| [94] |
Isa F, Collins S, Lee MH, et al. Mass Spectrometric Identification of Urinary Biomarkers of Pulmonary Tuberculosis. EBioMedicine, 2018, 31: 157-165. doi:10.1016/j.ebiom.2018.04.014.
pmid: 29752217 |
| [95] |
Pope CA 3rd, Bhatnagar A, McCracken JP, et al. Exposure to Fine Particulate Air Pollution Is Associated With Endothelial Injury and Systemic Inflammation. Circ Res, 2016, 119(11): 1204-1214. doi:10.1161/CIRCRESAHA.116.309279.
pmid: 27780829 |
| [96] |
Chen Y, Wang J, Zhang Q, et al. Microcystin-leucine arginine exhibits immunomodulatory roles in testicular cells resulting in orchitis. Environ Pollut, 2017, 229: 964-975. doi:10.1016/j.envpol.2017.07.081.
pmid: 28765008 |
| [97] | Yang T, Li Y, Lyu Z, et al. Characteristics of Proinflammatory Cytokines and Chemokines in Airways of Asthmatics: Relationships with Disease Severity and Infiltration of Inflammatory Cells. Chin Med J (Engl), 2017, 130(17): 2033-2040. doi:10.4103/0366-6999.213428. |
| [98] |
Clifford V, Tebruegge M, Zufferey C, et al. Mycobacteria-specific cytokine responses as correlates of treatment response in active and latent tuberculosis. J Infect, 2017, 75(2): 132-145. doi:10.1016/j.jinf.2017.04.011.
pmid: 28483404 |
| [99] | Won EJ, Choi JH, Cho YN, et al. Biomarkers for discrimination between latent tuberculosis infection and active tuberculosis disease. J Infect, 2017, 74(3): 281-293. doi:10.1016/j.jinf.2016.11.010. |
| [1] | Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences , Lishui Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University , Chinese Antituberculosis Association , Editorial Board of the Chinese Journal of Antituberculosis . Expert consensus on TCM syndrome differentiation, treatment principles, formulas, and herbs for latent tuberculosis infection [J]. Chinese Journal of Antituberculosis, 2026, 48(1): 1-8. |
| [2] | Shang Yuanyuan, Nie Wenjuan, Chu Naihui. Comparison of clinical characteristics and prognostic factors between elderly and non-elderly patients with Mycobacterium abscessus pulmonary disease [J]. Chinese Journal of Antituberculosis, 2026, 48(1): 106-112. |
| [3] | Tan Xiao, Li Fangping, Zhang Qian, Zhang Meijia. Causal effects of gut microbiota on non-tuberculous mycobacterial lung infection: a bidirectional two-sample mendelian randomization study [J]. Chinese Journal of Antituberculosis, 2026, 48(1): 121-130. |
| [4] | Fan Weixiao, Zhou Ke, Liu Jiayun. Identification of efferocytosis-related core genes in active tuberculosis patients based on GEO database [J]. Chinese Journal of Antituberculosis, 2026, 48(1): 139-147. |
| [5] | Zhu Qingdong, Zhao Chunyan, Huang Aichun, Zeng Chunmei, Gong Chunming, Xu Chaoyan, Jian Shasha, Li Weiwen, Song Chang. The disease burden and changing trends of HIV/AIDS-associated drug-susceptible tuberculosis in the elderly population aged 60 above of China from 1990 to 2021 [J]. Chinese Journal of Antituberculosis, 2026, 48(1): 34-40. |
| [6] | Tian Xiaomei, Jiang Xuefeng, Yang Xia, Sha Xiaolan, Lei Juan, Wang Xiaowei, Liu Jing. Analysis of case detection and anti-tuberculosis treatment outcomes in Mycobacterium tuberculosis/HIV co-infected patients in Ningxia from 2015 to 2023 [J]. Chinese Journal of Antituberculosis, 2026, 48(1): 57-63. |
| [7] | National Clinical Research Center for Infectious Diseases , Peking University Shenzhen Hospital , Shenzhen Key Laboratory of Immunity and Inflammatory Diseases , The Third People’s Hospital of Shenzhen , Expert Consensus Group on the Etiology and Diagnosis of Erythema Nodosum . Expert consensus on the etiology and diagnosis of erythema nodosum (2025 version) [J]. Chinese Journal of Antituberculosis, 2025, 47(9): 1126-1134. |
| [8] | Yan Yueming, Chen Meng, Li Xuekui, Wang Zhongdong, Sun Haiyan, Dai Xiaoqi, Song Song, Xu Honghong, Zhang Menghan, Wang Zhi, Lyu Kunzheng. Prevalence and influencing factors of latent tuberculosis infection among elderly residents in nursing homes in Qingdao [J]. Chinese Journal of Antituberculosis, 2025, 47(9): 1148-1153. |
| [9] | Zhu Tingting, Wang Mingzhe, Zulikatiayi Abudula, Gulina Badeerhan, Kaideliyan Abuduwaili, Wang Le. Preliminary analysis of the construction of mouse models infected with Xinjiang Uygur Autonomous Region Mycobacterium tuberculosis CAS lineage and H37Rv standard strain [J]. Chinese Journal of Antituberculosis, 2025, 47(9): 1187-1195. |
| [10] | Wang Lin, Qu Yan. Research progress on hospital infection prevention and control of multidrug-resistant organisms [J]. Chinese Journal of Antituberculosis, 2025, 47(9): 1196-1203. |
| [11] | Zhang Xiaoke, Chen Ling. Research progress on the anti-tuberculosis effect and mechanism of cinnamaldehyde on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(9): 1220-1226. |
| [12] | Chen Liyao, Peng Xiao, Liu Yuanyuan, Shi Jin, Guo Yongli, Lu Jie. The molecular mechanisms of ferroptosis and their potential applications in the diagnosis and treatment of tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(9): 1227-1232. |
| [13] | Zhang Ye, Liang Wenwen, Huo Chenchao, Shi Jinghua, Qi Xianglong, Cheng Kai, Lu Yu, Xu Jian. Synergistic effect of zuclopenthixol on the anti-tuberculosis activity of clofazimine and its mechanism of action on MmpL5-MmpS5 [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1023-1030. |
| [14] | Fan Ruifang, Dai Xiaowei, Yang Xinyu, Chen Shuangshuang, Chen Hao, Yu Lan, Zhao Yanfeng, Li Chuanyou, Wang Nenhan. A study on the identification of Mycobacterium species using fluorescent PCR probe melting curve technique and DNA microarray chip technique [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1031-1037. |
| [15] | Zhu Qingyu, Liu Jiayun, Long Yin. Advances in the application of extracellular vesicles and the diagnosis of tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1077-1084. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备11010202007215号
Total visitors: Visitors of today: Now online:
This work is licensed under Creative Commons Attribution 3.0 License.