Chinese Journal of Antituberculosis ›› 2024, Vol. 46 ›› Issue (9): 991-997.doi: 10.19982/j.issn.1000-6621.20240219
• Special Topie • Previous Articles Next Articles
Li Yang1,2, Sun Feng1,2, Zhang Wenhong1,2()
Received:
2024-05-30
Online:
2024-09-10
Published:
2024-08-30
Contact:
Zhang Wenhong, Email: Supported by:
CLC Number:
Li Yang, Sun Feng, Zhang Wenhong. Short-course treatment for tuberculosis: past achievements and future directions[J]. Chinese Journal of Antituberculosis, 2024, 46(9): 991-997. doi: 10.19982/j.issn.1000-6621.20240219
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20240219
[1] | 舒薇, 刘宇红. 世界卫生组织《2023年全球结核病报告》解读. 结核与肺部疾病杂志, 2024, 5(1):15-19. doi:10.19983/j.issn.2096-8493.2024006. |
[2] | Millington KA, White RG, Lipman M, et al. The 2023 UN high-level meeting on tuberculosis: renewing hope, momentum, and commitment to end tuberculosis. Lancet Respir Med, 2024, 12(1): 10-13. doi:10.1016/S2213-2600(23)00409-5. |
[3] | 李杨, 吴利俊, 王钰琛, 等. 2016—2021年全球结核研究现状及热点:基于VOSviewer的可视化分析. 复旦学报(医学版), 2022, 49(2): 159-167. 10.3969/j.issn.1672-8467.2022.02.001. |
[4] | Lee A, Xie YL, Barry CE, et al. Current and future treatments for tuberculosis. BMJ, 2020, 368: m216. doi:10.1136/bmj.m216. |
[5] | Bignall J, Rist N. An international investigation of the efficacy of chemotherapy in previously untreated patients with pulmonary tuberculosis. A trial directed by the Committee on Treatment and the Committee on Bacteriology and Immunology of the International Union against Tuberculosis. Bull Int Union Tuberc, 1964, 34: 79-191. |
[6] | McCune RM Jr, McDermott W, Tompsett R.The fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. Ⅱ. The conversion of tuberculous infection to the latent state by the administration of pyrazinamide and a companion drug. J Exp Med, 1956, 104(5): 763-802. doi:10.1084/jem.104.5.763. |
[7] |
Grumbach F. Activity of rifampicin on experimental tuberculosis in mice. The development of resistance to rifampicin. Therapeutic effects of combinations of different drugs with rifampicin. Antibiot Chemother, 1970, 16: 392-405.
pmid: 5002305 |
[8] |
Controlled clinical trial of short-course (6-month) regimens of chemotherapy for treatment of pulmonary tuberculosis. Lancet, 1972, 1(7760): 1079-1085.
pmid: 4112569 |
[9] | Controlled clinical trial of four short-course (6-month) regimens of chemotherapy for treatment of pulmonary tuberculosis. Third report. Lancet, 1974, 2(7875): 237-240. |
[10] | Short-course chemotherapy in pulmonary tuberculosis. A controlled trial by the British Thoracic and Tuberculosis Association. Lancet, 1975, 1(7899): 119-124. |
[11] | Controlled clinical trial of four short-course regimens of chemotherapy for two durations in the treatment of pulmonary tuberculosis: first report: Third East African/British Medical Research Councils study. Am Rev Respir Dis, 1978, 118(1): 39-48. doi:10.1164/arrd.1978.118.1.39. |
[12] | Aguilar Diaz JM, Abulfathi AA, Te Brake LH, et al. New and repurposed drugs for the treatment of active tuberculosis: an update for clinicians. Respiration, 2023, 102(2): 83-100. doi:10.1159/000528274. |
[13] | 常蕴青, 顾瑾, 付亮, 等. 耐多药结核病短程治疗研究进展. 中华传染病杂志, 2018, 36(11): 697-700. doi:10.3760/cma.j.issn.1000-6680.2018.11.015. |
[14] | Dorman SE, Nahid P, Kurbatova EV, et al. Four-month rifapentine regimens with or without moxifloxacin for tuberculosis. N Engl J Med, 2021, 384(18): 1705-1718. doi:10.1056/NEJMoa2033400. |
[15] | World Health Organization. WHO consolidated guidelines on tuberculosis. Module 4: treatment-drug-susceptible tuberculosis treatment. Geneva: World Health Organization, 2022. |
[16] | Feng Z, Miao Y, Peng Y, et al. Optimizing (O) rifapentine-based (RI) regimen and shortening (EN) the treatment of drug-susceptible tuberculosis (T)(ORIENT) using an adaptive seamless design: study protocol of a multicenter randomized controlled trial. BMC Infect Dis, 2023, 23(1): 300. doi:10.1186/s12879-023-08264-2. |
[17] | Paton NI, Cousins C, Suresh C, et al. Treatment strategy for rifampin-susceptible tuberculosis. N Engl J Med, 2023, 388(10): 873-887. doi:10.1056/NEJMoa2212537. |
[18] | Nunn AJ, Phillips PPJ, Meredith SK, et al. A trial of a shorter regimen for rifampin-resistant tuberculosis. N Engl J Med, 2019, 380(13): 1201-1213. doi:10.1056/NEJMoa1811867. |
[19] |
Goodall RL, Meredith SK, Nunn AJ, et al. Evaluation of two short standardised regimens for the treatment of rifampicin-resistant tuberculosis (STREAM stage 2): an open-label, multicentre, randomised, non-inferiority trial. Lancet, 2022, 400(10366): 1858-1868. doi:10.1016/S0140-6736(22)02078-5.
pmid: 36368336 |
[20] |
Hewison C, Khan U, Bastard M, et al. Safety of treatment regimens containing bedaquiline and delamanid in the endTB cohort. Clin Infect Dis, 2022, 75(6): 1006-1013. doi:10.1093/cid/ciac019.
pmid: 35028659 |
[21] | Conradie F, Diacon AH, Ngubane N, et al. Treatment of highly drug-resistant pulmonary tuberculosis. N Engl J Med, 2020, 382(10): 893-902. doi:10.1056/NEJMoa1901814. |
[22] | Nyang’wa BT, Berry C, Kazounis E, et al. A 24-week, alloral regimen for rifampin-resistant tuberculosis. N Engl J Med, 2022, 387(25): 2331-2343. doi:10.1056/NEJMoa-2117166. |
[23] | Nyang’wa BT, Berry C, Kazounis E, et al. Short oral regimens for pulmonary rifampicin-resistant tuberculosis (TB-PRACTECAL): an open-label, randomised, controlled, phase 2B-3, multi-arm, multicentre, non-inferiority trial. Lancet Respir Med, 2024, 12(2): 117-128. doi:10.1016/S2213-2600(23)00389-2. |
[24] | World Health Organization. Rapid communication: key changes to the treatment of drug-resistant tuberculosis. Geneva: World Health Organization, 2022. |
[25] | Weng T, Sun F, Li Y, et al. Refining MDR-TB treatment regimens for ultra short therapy (TB-TRUST): study protocol for a randomized controlled trial. BMC Infect Dis, 2021, 21(1): 183. doi:10.1186/s12879-021-05870-w. |
[26] |
Mok J, Lee M, Kim DK, et al. 9 months of delamanid, linezolid, levofloxacin, and pyrazinamide versus conventional therapy for treatment of fluoroquinolone-sensitive multidrug-resistant tuberculosis (MDR-END): a multicentre, randomised, open-label phase 2/3 non-inferiority trial in South Korea. Lancet, 2022, 400(10362): 1522-1530. doi:10.1016/S0140-6736(22)01883-9.
pmid: 36522208 |
[27] | Esmail A, Oelofse S, Lombard C, et al. An all-oral 6-month regimen for multidrug-resistant tuberculosis: a multicenter, randomized controlled clinical trial (the NExT study). Am J Respir Crit Care Med, 2022, 205(10): 1214-1227. doi:10.1164/rccm.202107-1779OC. |
[28] | Padmapriyadarsini C, Vohra V, Bhatnagar A, et al. Bedaquiline, delamanid, linezolid, and clofazimine for treatment of pre-extensively drug-resistant tuberculosis. Clin Infect Dis, 2023, 76(3): e938-e946. doi:10.1093/cid/ciac528. |
[29] | Sterling TR, Villarino ME, Borisov AS, et al. Three months of rifapentine and isoniazid for latent tuberculosis infection. N Engl J Med, 2011, 365(23): 2155-2166. doi:10.1056/NEJMoa1104875. |
[30] | Menzies D, Adjobimey M, Ruslami R, et al. Four months of rifampin or nine months of isoniazid for latent tuberculosis in adults. N Engl J Med, 2018, 379(5): 440-453. doi:10.1056/NEJMoa1714283. |
[31] | Swindells S, Ramchandani R, Gupta A, et al. One month of rifapentine plus isoniazid to prevent HIV-related tuberculosis. N Engl J Med, 2019, 380(11): 1001-1011. doi:10.1056/NEJMoa1806808. |
[32] | Ruan QL, Huang XT, Yang QL, et al. Efficacy and safety of weekly rifapentine and isoniazid for tuberculosis prevention in Chinese silicosis patients: a randomized controlled trial. Clin Microbiol Infect, 2021, 27(4): 576-582. doi:10.1016/j.cmi.2020.06.008. |
[33] | Gao L, Zhang H, Xin H, et al. Short-course regimens of rifapentine plus isoniazid to treat latent tuberculosis infection in older Chinese patients: a randomised controlled study. Eur Respir J, 2018, 52(6):1801470. doi:10.1183/13993003.01470-2018. |
[34] | Ismail NA, Omar SV, Moultrie H, et al. Assessment of epidemiological and genetic characteristics and clinical outcomes of resistance to bedaquiline in patients treated for rifampicin-resistant tuberculosis: a cross-sectional and longitudinal study. Lancet Infect Dis, 2022, 22(4): 496-506. doi:10.1016/S1473-3099(21)00470-9. |
[35] | Azimi T, Khoshnood S, Asadi A, et al. Linezolid resistance in multidrug-resistant Mycobacterium tuberculosis: A systematic review and meta-analysis. Front Pharmacol, 2022,13: 955050. doi:10.3389/fphar.2022.955050. |
[36] | Diacon AH. Two Steps Forward, One Step Back. N Engl J Med, 2022, 387(25): 2380-2381. doi:10.1056/NEJMe2214707. |
[37] | Ramey ME, Kaya F, Bauman AA, et al. Drug distribution and efficacy of the DprE 1 inhibitor BTZ-043 in the C3HeB/FeJ mouse tuberculosis model. Antimicrob Agents Chemother, 2023, 67(11): e0059723. doi:10.1128/aac.00597-23. |
[38] | Holt E. Phase 2 trial of a novel tuberculosis drug launched. Lancet Microbe, 2024, 5(4): e316. doi:10.1016/S2666-5247(23)00401-9. |
[39] |
Boeree MJ, Lange C, Thwaites G, et al. UNITE4TB: a new consortium for clinical drug and regimen development for TB. Int J Tuberc Lung Dis, 2021, 25(11): 886-889. doi:10.5588/ijtld.21.0515.
pmid: 34686229 |
[40] | Fox GJ, Nguyen CB, Nguyen TA, et al. Levofloxacin versus placebo for the treatment of latent tuberculosis among contacts of patients with multidrug-resistant tuberculosis (the VQUIN MDR trial): a protocol for a randomised controlled trial. BMJ Open, 2020, 10(1):e033945. doi:10.1136/bmjopen-2019-033945. |
[41] | Peloquin CA. Pharmacological issues in the treatment of tuberculosis. Ann N Y Acad Sci, 2001, 953: 157-164. doi:10.1111/j.1749-6632.2001.tb11374.x. |
[42] | Velásquez GE, Brooks MB, Coit JM, et al. Efficacy and safety of high-dose rifampin in pulmonary tuberculosis. A randomized controlled trial. Am J Respir Crit Care Med, 2018, 198(5): 657-666. doi:10.1164/rccm.201712-2524OC. |
[43] | Onorato L, Gentile V, Russo A, et al. Standard versus high dose of rifampicin in the treatment of pulmonary tuberculosis: a systematic review and meta-analysis. Clin Microbiol Infect, 2021, 27(6): 830-837. doi:10.1016/j.cmi.2021.03.031. |
[44] | Jindani A, Atwine D, Grint D, et al. Four-Month High-Dose Rifampicin Regimens for Pulmonary Tuberculosis. NEJM Evid, 2023, 2(9): EVIDoa2300054. doi:10.1056/EVIDoa-2300054. |
[45] | 宋凌云, 张忆琳, 孙峰, 等. 持续提高耐药结核病治疗安全性的挑战与对策. 中华传染病杂志, 2023, 41(12): 797-801. doi:10.3760/cma.j.cn311365-20230729-00020. |
[46] | 胡艳梅, 罗丹霖, 李杨, 等. 利奈唑胺治疗耐多药肺结核患者的不良反应分析. 中华传染病杂志, 2022, 40(8): 476-482. doi:10.3760/cma.j.cn311365-20210710-00247. |
[47] | Conradie F, Bagdasaryan TR, Borisov S, et al. Bedaquiline-pretomanid-linezolid regimens for drug-resistant tuberculosis. N Engl J Med, 2022, 387(9): 810-823. doi:10.1056/NEJMoa2119430. |
[48] | Fregonese F, Apriani L, Barss L, et al. High dose rifampin for 2 months vs standard dose rifampin for 4 months, to treat TB infection: Protocol of a 3-arm randomized trial (2R2). PLoS One, 2023, 18(2): e0278087. doi:10.1371/journal.pone.0278087. |
[49] | Turkova A, Wills GH, Wobudeya E, et al. Shorter treatment for nonsevere tuberculosis in African and Indian children. N Engl J Med, 2022, 386(10): 911-922. doi:10.1056/NEJMoa2104535. |
[50] | 初乃惠, 周文强. 耐药结核病的诊治进展. 中华传染病杂志, 2021, 39(7): 385-391. doi:10.3760/cma.j.cn311365-20210414-00133. |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||