Chinese Journal of Antituberculosis ›› 2023, Vol. 45 ›› Issue (12): 1177-1185.doi: 10.19982/j.issn.1000-6621.20230253
• Original Articles • Previous Articles Next Articles
Sun Minghao1, Duan Yuqi1, Zheng Liang1, Yu Shengnan1, Cheng Chuanlong1, Zuo Hui1, Chen Ming2(), Li Xiujun1(
)
Received:
2023-07-25
Online:
2023-12-10
Published:
2023-11-27
Contact:
Li Xiujun, Email: Supported by:
CLC Number:
Sun Minghao, Duan Yuqi, Zheng Liang, Yu Shengnan, Cheng Chuanlong, Zuo Hui, Chen Ming, Li Xiujun. Application of ARIMA, ARIMAX, and NGO-LSTM models in forecasting the incidence of tuberculosis cases in Liaocheng City, Shandong Province[J]. Chinese Journal of Antituberculosis, 2023, 45(12): 1177-1185. doi: 10.19982/j.issn.1000-6621.20230253
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20230253
变量 | 均值 | 标准差 | 最小值 | 下四分位数 | 中位数 | 上四分位数 | 最大值 | 四分位距 |
---|---|---|---|---|---|---|---|---|
月发病数(例) | 244.53 | 44.45 | 153.00 | 212.00 | 244.00 | 268.50 | 432.00 | 56.50 |
MAT(℃) | 14.34 | 10.13 | -4.10 | 4.20 | 15.54 | 24.40 | 29.37 | 20.20 |
MALT(℃) | 9.86 | 10.07 | -8.95 | -0.16 | 10.69 | 19.79 | 25.91 | 19.94 |
MAHT(℃) | 19.92 | 10.16 | 1.40 | 9.66 | 22.00 | 29.24 | 33.67 | 19.58 |
MAH(%) | 65.31 | 10.71 | 41.68 | 57.02 | 64.69 | 74.49 | 83.97 | 17.48 |
MAP(hPa) | 1012.39 | 8.87 | 997.03 | 1003.98 | 1013.04 | 1020.06 | 1027.74 | 16.08 |
MAS(m/s) | 2.05 | 0.43 | 1.23 | 1.76 | 2.03 | 2.31 | 3.34 | 0.55 |
ARIMA模型 | 赤池信息 准则 | P值 (Ljung-Box检验) |
---|---|---|
ARIMA(3,1,3)×(0,1,0)12 | 772.728 | 0.881 |
ARIMA(3,1,3)×(1,1,0)12 | 755.954 | 0.870 |
ARIMA(3,1,3)×(2,1,0)12 | 757.713 | 0.853 |
ARIMA(3,1,3)×(0,1,1)12 | 751.211 | 0.881 |
ARIMA(3,1,3)×(1,1,1)12 | 752.925 | 0.786 |
ARIMA(3,1,3)×(2,1,1)12 | 754.639 | 0.808 |
ARIMA(3,1,3)×(0,1,2)12 | 752.962 | 0.785 |
ARIMA(3,1,3)×(1,1,2)12 | 754.891 | 0.789 |
ARIMA(3,1,3)×(2,1,2)12 | 755.252 | 0.826 |
因子 | 滞后时间 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0个月 | 1个月 | 2个月 | 3个月 | 4个月 | 5个月 | 6个月 | 7个月 | 8个月 | 9个月 | 10个月 | 11个月 | 12个月 | |
MAT | -0.070 | 0.114 | 0.063 | -0.298a | 0.153 | -0.181a | -0.049 | -0.036 | -0.010 | 0.096 | 0.029 | 0.031 | 0.063 |
MAHT | -0.057 | 0.087 | 0.042 | -0.048 | 0.260 | -0.059 | -0.271a | 0.011 | -0.071 | 0.020 | 0.087 | -0.057 | -0.024 |
MALT | -0.030 | 0.028 | -0.215a | -0.006 | 0.068 | -0.197 | -0.050 | -0.001 | 0.068 | 0.117 | -0.011 | -0.003 | 0.074 |
MAH | 0.043 | -0.094a | -0.033 | -0.050 | -0.013 | -0.090 | 0.044 | -0.025 | -0.004 | 0.058 | -0.058 | 0.033 | -0.007 |
MAP | 0.019 | -0.062 | -0.233a | 0.014 | -0.058 | 0.080 | 0.120 | -0.137 | -0.041 | -0.100 | 0.007 | 0.080 | -0.023 |
MAS | 0.093 | 0.030 | -0.157 | 0.073 | 0.038 | 0.177a | -0.049 | 0.041 | 0.081 | -0.041 | 0.082 | 0.015 | 0.102 |
模型 | 拟合 | 预测 | ||||
---|---|---|---|---|---|---|
MAPE(%) | MAE | RMSE | MAPE(%) | MAE | RMSE | |
ARIMA(3,1,3)×(0,1,1)12 | 8.063 | 20.190 | 29.896 | 9.293 | 19.282 | 23.773 |
ARIMA(3,1,3)×(0,1,1)12+MAT(lag3) | 8.026 | 20.085 | 29.741 | 9.345 | 19.397 | 23.961 |
ARIMA(3,1,3)×(0,1,1)12+MAT(lag5) | 8.418 | 21.312 | 31.056 | 10.952 | 22.995 | 33.213 |
ARIMA(3,1,3)×(0,1,1)12+MAHT(lag6) | 9.187 | 22.879 | 33.823 | 9.496 | 20.751 | 24.206 |
ARIMA(3,1,3)×(0,1,1)12+MALT(lag2) | 8.040 | 20.134 | 29.794 | 9.181 | 19.075 | 23.493 |
ARIMA(3,1,3)×(0,1,1)12+MAH(lag1) | 7.643 | 19.210 | 29.616 | 8.598 | 17.788 | 22.988 |
ARIMA(3,1,3)×(0,1,1)12+MAP(lag2) | 8.330 | 20.721 | 30.030 | 10.830 | 21.775 | 32.471 |
ARIMA(3,1,3)×(0,1,1)12+MAS(lag5) | 8.658 | 21.767 | 32.016 | 11.941 | 24.029 | 34.291 |
ARIMA(3,1,3)×(0,1,1)12+MALT(lag2)+MAH(lag1) | 7.330 | 18.983 | 29.227 | 8.419 | 16.997 | 22.191 |
模型 | MAPE(%) | MAE | RMSE |
---|---|---|---|
ARIMA(3,1,3)×(0,1,0)12 | 10.330 | 21.546 | 27.637 |
ARIMA(3,1,3)×(1,1,0)12 | 9.891 | 21.213 | 27.115 |
ARIMA(3,1,3)×(2,1,0)12 | 10.734 | 23.210 | 29.985 |
ARIMA(3,1,3)×(0,1,1 | 9.293a | 19.282a | 23.773a |
ARIMA(3,1,3)×(1,1,1)12 | 10.182 | 21.458 | 27.323 |
ARIMA(3,1,3)×(2,1,1)12 | 10.477 | 21.879 | 27.834 |
ARIMA(3,1,3)×(0,1,2)12 | 10.203 | 21.505 | 27.369 |
ARIMA(3,1,3)×(1,1,2)12 | 9.559 | 20.209 | 24.642 |
ARIMA(3,1,3)×(2,1,2)12 | 11.067 | 23.991 | 31.434 |
ARIMA(3,1,3)×(1,1,1)12+MAT(lag2) | 10.725 | 22.367 | 28.948 |
ARIMA(3,1,3)×(0,1,1)12+MAHT(lag3) | 11.385 | 24.427 | 31.737 |
ARIMA(3,1,3)×(1,1,1)12+MALT(lag3) | 10.001 | 21.242 | 27.27 |
ARIMA(3,1,3)×(1,1,1)12+MAH(lag1) | 9.539 | 19.409 | 24.313 |
ARIMA(3,1,3)×(1,1,1)12+MAP(lag3) | 10.971 | 23.429 | 30.636 |
ARIMA(3,1,3)×(1,1,1)12+MAS(lag4) | 12.198 | 24.806 | 34.857 |
ARIMA(3,1,3)×(1,1,1)12+MALT(lag3)+MAH(lag1) | 8.626 | 17.825 | 22.992 |
参数调整 | 最大迭 代次数 | 学习率衰减的 起始迭代次数 | 学习率 衰减因子 | 优化器 | NGO种 群数量 | NGO迭 代次数 | MAPE (%) | MAE | RMSE |
---|---|---|---|---|---|---|---|---|---|
原模型a | 2000a | 850a | 0.2a | Adama | 10a | 30a | 5.820a | 13.119a | 16.297a |
减小最大迭代次数 | 1000 | 850 | 0.2 | Adam | 10 | 30 | 6.448 | 13.386 | 18.600 |
增大最大迭代次数 | 3000 | 850 | 0.2 | Adam | 10 | 30 | 6.236 | 12.180 | 16.903 |
减小学习率衰减的起始迭代次数 | 2000 | 450 | 0.2 | Adam | 10 | 30 | 6.384 | 13.260 | 17.230 |
增大学习率衰减的起始迭代次数 | 2000 | 1250 | 0.2 | Adam | 10 | 30 | 7.973 | 16.919 | 20.479 |
减小学习率衰减因子 | 2000 | 850 | 0.1 | Adam | 10 | 30 | 5.950 | 11.649 | 16.829 |
增大学习率衰减因子 | 2000 | 850 | 0.3 | Adam | 10 | 30 | 5.887 | 11.466 | 16.661 |
改变优化器 | 2000 | 850 | 0.2 | RMSprop | 10 | 30 | 8.313 | 17.612 | 21.324 |
减小NGO迭代次数 | 2000 | 850 | 0.2 | Adam | 10 | 20 | 5.914 | 11.242 | 16.788 |
减小NGO迭代次数 | 2000 | 850 | 0.2 | Adam | 10 | 25 | 6.719 | 14.472 | 19.401 |
增大NGO迭代次数 | 2000 | 850 | 0.2 | Adam | 10 | 35 | 8.023 | 17.311 | 21.115 |
增大NGO迭代次数 | 2000 | 850 | 0.2 | Adam | 10 | 40 | 7.267 | 16.665 | 19.552 |
减小NGO种群数量 | 2000 | 850 | 0.2 | Adam | 5 | 30 | 7.245 | 16.173 | 19.470 |
增大NGO种群数量 | 2000 | 850 | 0.2 | Adam | 15 | 30 | 6.044 | 11.813 | 16.862 |
增大NGO种群数量 | 2000 | 850 | 0.2 | Adam | 20 | 30 | 6.664 | 14.049 | 18.977 |
[1] |
Li Z, Wang Z, Song H, et al. Application of a hybrid model in predicting the incidence of tuberculosis in a Chinese population. Infect Drug Resist, 2019, 12: 1011-1020. doi:10.2147/IDR.S190418.
pmid: 31118707 |
[2] | World Health Organization. Global tuberculosis report 2022. Geneva: World Health Organization, 2022. |
[3] | Duan Y, Cheng J, Liu Y, et al. Epidemiological Characteristics and Spatial-Temporal Analysis of Tuberculosis at the County-Level in Shandong Province, China, 2016—2020. Trop Med Infect Dis, 2022, 7(11): 346. doi:10.3390/tropicalmed7110346. |
[4] | World Health Organization. The end tb strategry. Geneva: World Health Organization, 2014. |
[5] |
Zhai M, Li W, Tie P, et al. Research on the predictive effect of a combined model of ARIMA and neural networks on human brucellosis in Shanxi Province, China: a time series predictive analysis. BMC Infect Dis, 2021, 21(1): 280. doi:10.1186/s12879-021-05973-4.
pmid: 33740904 |
[6] | Alzahrani SI, Aljamaan IA, Al-Fakih EA. Forecasting the spread of the COVID-19 pandemic in Saudi Arabia using ARIMA prediction model under current public health interventions. J Infect Public Health, 2020, 13(7): 914-919. doi:10.1016/j.jiph.2020.06.001. |
[7] | Harris RC, Sumner T, Knight GM, et al. Age-targeted tuberculosis vaccination in China and implications for vaccine deve-lopment: a modelling study. Lancet Glob Health, 2019, 7(2): e209-e218. doi:10.1016/S2214-109X(18)30452-2. |
[8] | 郑佳纯. 贝叶斯模型预测新型冠状病毒肺炎流行趋势的研究. 汕头: 汕头大学, 2021. |
[9] |
Ji TJ, Cheng Q, Zhang Y, et al. A Novel Early Warning Model for Hand, Foot and Mouth Disease Prediction Based on a Graph Convolutional Network. Biomed Environ Sci, 2022, 35(6): 494-503. doi:10.3967/bes2022.065.
pmid: 35882409 |
[10] | Benvenuto D, Giovanetti M, Vassallo L, et al. Application of the ARIMA model on the COVID-2019 epidemic dataset. Data Brief, 2020, 29: 105340. doi:10.1016/j.dib.2020.105340. |
[11] | Chen YP, Liu LF, Che Y, et al. Modeling and Predicting Pulmonary Tuberculosis Incidence and Its Association with Air Pollution and Meteorological Factors Using an ARIMAX Model: An Ecological Study in Ningbo of China. Int J Environ Res Public Health, 2022, 19(9): 5385. doi:10.3390/ijerph19095385. |
[12] | Zhang YQ, Li XX, Li WB, et al. Analysis and predication of tuberculosis registration rates in Henan Province, China: an exponential smoothing model study. Infect Dis Poverty, 2020, 9(1): 123. doi:10.1186/s40249-020-00742-y. |
[13] | Li Z, Li Y. A comparative study on the prediction of the BP artificial neural network model and the ARIMA model in the incidence of AIDS. BMC Med Inform Decis Mak, 2020, 20(1): 143. doi:10.1186/s12911-020-01157-3. |
[14] | Huang S, Cai N, Pacheco PP, et al. Applications of Support Vector Machine (SVM) Learning in Cancer Genomics. Cancer Genomics Proteomics, 2018, 15(1): 41-51. doi:10.21873/cgp.20063. |
[15] | Wang G, Wei W, Jiang J, et al. Application of a long short-term memory neural network: a burgeoning method of deep learning in forecasting HIV incidence in Guangxi, China. Epidemiol Infect, 2019, 147: e194. doi:10.1017/S095026881900075X. |
[16] | Zhao D, Zhang H, Cao Q, et al. The research of ARIMA, GM(1,1), and LSTM models for prediction of TB cases in China. PLoS One, 2022, 17(2): e0262734. doi:10.1371/journal.pone.0262734. |
[17] | Zhang R, Guo Z, Meng Y, et al. Comparison of ARIMA and LSTM in Forecasting the Incidence of HFMD Combined and Uncombined with Exogenous Meteorological Variables in Ningbo, China. Int J Environ Res Public Health, 2021, 18(11): 6174. doi:10.3390/ijerph18116174. |
[18] | Yu L, Zhou L, Tan L, et al. Application of a new hybrid model with seasonal auto-regressive integrated moving average (ARIMA) and nonlinear auto-regressive neural network (NARNN) in forecasting incidence cases of HFMD in Shenzhen, China. PLoS One, 2014, 9(6): e98241. doi:10.1371/journal.pone.0098241. |
[19] | Yang Q, Wang J, Ma H, et al. Research on COVID-19 based on ARIMA modelΔ-Taking Hubei, China as an example to see the epidemic in Italy. J Infect Public Health, 2020, 13(10): 1415-1418. doi:10.1016/j.jiph.2020.06.019. |
[20] |
Zhang CY, Zhang A. Climate and air pollution alter incidence of tuberculosis in Beijing, China. Ann Epidemiol, 2019, 37: 71-76. doi:10.1016/j.annepidem.2019.07.003.
pmid: 31473123 |
[21] | Rao HX, Zhang X, Zhao L, et al. Spatial transmission and meteorological determinants of tuberculosis incidence in Qinghai Province, China: a spatial clustering panel analysis. Infect Dis Poverty, 2016, 5(1): 45. doi:10.1186/s40249-016-0139-4. |
[22] |
Zhang Y, Liu M, Wu SS, et al. Spatial distribution of tuberculosis and its association with meteorological factors in mainland China. BMC Infect Dis, 2019, 19(1): 379. doi:10.1186/s12879-019-4008-1.
pmid: 31053104 |
[23] | Li ZQ, Pan HQ, Liu Q, et al. Comparing the performance of time series models with or without meteorological factors in predicting incident pulmonary tuberculosis in eastern China. Infect Dis Poverty, 2020, 9(1): 151. doi:10.1186/s40249-020-00771-7. |
[24] | Mohammad D, Štěpán H, Pavel T. Northern Goshawk Optimization: A New Swarm-Based Algorithm for Solving Optimization Problems. IEEE Access, 2021, 9:162059-162080. doi:10.1109/ACCESS.2021.3133286. |
[25] |
Jing QL, Cheng Q, Marshall JM, et al. Imported cases and minimum temperature drive dengue transmission in Guangzhou, China: evidence from ARIMAX model. Epidemiol Infect, 2018, 146(10): 1226-1235. doi:10.1017/S0950268818001176.
pmid: 29781412 |
[26] |
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput, 1997, 9(8): 1735-1780. doi:10.1162/neco.1997.9.8.1735.
pmid: 9377276 |
[27] | Bengio Y, Simard P, Frasconi P. Learning long-term depen-dencies with gradient descent is difficult. IEEE Trans Neural Netw, 1994, 5(2): 157-166. doi:10.1109/72.279181. |
[28] | Luong T, Pham H, Manning CD. Effective approaches to attention-based neural machine translation. arXiv preprint arXiv, 2015: 150804025. doi:10.48550/arXiv.1508.04025. |
[29] | Zaremba W, Sutskever I, Vinyals O. Recurrent neural network regularization. arXiv preprint arXiv, 2014: 14092329. doi:1409.2329/arXiv.1409.2329. |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||