Chinese Journal of Antituberculosis ›› 2023, Vol. 45 ›› Issue (6): 543-558.doi: 10.19982/j.issn.1000-6621.20230113
• Guideline·Standard·Consensus • Previous Articles Next Articles
Senior Department of Tuberculosis, the 8th Medical Center of Chinese PLA General Hospital, Editorial Board of Chinese Journal of Antituberculosis, Tuberculosis Control Branch of China Intrnational Exchange and Promotive Association for Medical and Health Care
Received:
2023-04-14
Online:
2023-06-10
Published:
2023-06-06
Contact:
Liang Jianqin, Email: ljqbj309@163.com; Wu Xueqiong, Email: xueqiongwu@139.com; An Huiru, Email: anhuiru74@sina.com
CLC Number:
Senior Department of Tuberculosis, the th Medical Center of Chinese PLA General Hospital, Editorial Board of Chinese Journal of Antituberculosis, Tuberculosis Control Branch of China Intrnational Exchange and Promotive Association for Medical and Health Care. Expert consensus on the clinical application of nucleic acid MALDI-TOF MS technique in the diagnosis of tuberculosis and non-tuberculosis mycobacteriosis[J]. Chinese Journal of Antituberculosis, 2023, 45(6): 543-558. doi: 10.19982/j.issn.1000-6621.20230113
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20230113
诊断方法 | 应用优势 | 应用局限 |
---|---|---|
实时荧光定量PCR技术 | 可直接检测呼吸道样本,技术成熟,应用广泛,敏感度和特异度均较高 | 检测通量较低 |
恒温扩增技术 | 无需温度梯度循环,保持温度恒定,对设备要求不高。快速检测结核分枝杆菌,肉眼可观察 | 仅能进行病原学的鉴定,不能检测耐药性。高温、高湿、试剂不足和交叉污染会出现假阳性结果 |
基因芯片/线性探针技术 | 高通量,可一次完成菌种鉴定和多个耐药相关基因位点的检测。敏感度和特异度均较高 | 所需样本量大。检测的耐药位点有限;杂交、洗涤过程较繁琐、费时 |
基因测序技术 | 宏基因组测序可同时检测多种病原微生物,可检测到已知耐药位点以外的突变,可用于发现新的耐药机制。靶向测序技术可检测到所有的耐药相关基因的突变类型。一代测序常作为分子药物敏感性检测结果和表型药物敏感性检测结果不一致时的验证手段 | 靶向测序技术对样本、设备和结果解读的要求高。一代测序对异质性耐药的检测受限 |
核酸MALDI-TOF MS技术 | 高通量,可一次性覆盖所有一线药物和大部分常用二线药物的耐药基因位点,可很好区分结核分枝杆菌和非结核分枝杆菌,具有较高的灵活性。敏感度和特异度高。可检测混合感染、异质性耐药、同义突变 | 只能覆盖已知的耐药基因位点,依赖于耐药机制的发现 |
序号 | 中文名称 | 拉丁文名称 |
---|---|---|
结核分枝杆菌复合群 | ||
1 | 结核分枝杆菌 | M.tuberculosis |
2 | 牛分枝杆菌 | M.bovis |
3 | 牛分枝杆菌BCG | M.bovis BCG |
4 | 田鼠分枝杆菌 | M.microti |
5 | 非洲分枝杆菌 | M.africanum |
6 | 卡内蒂分枝杆菌 | M.canetti |
7 | 山羊分枝杆菌 | M.caprae |
8 | 海豹分枝杆菌 | M.pinnipedii |
非结核分枝杆菌 | ||
1 | 鸟分枝杆菌 | M.avium |
2 | 胞内分枝杆菌 | M.intracellulare |
3 | 莲建洞分枝杆菌 | M.yongonense |
4 | 脓肿分枝杆菌 | M.abscessus |
5 | 博莱分枝杆菌 | M.bolletii |
6 | 马赛分枝杆菌 | M.massiliense |
7 | 偶发分枝杆菌 | M.fortuitum |
8 | 堪萨斯分枝杆菌 | M.kansasii |
9 | 戈登分枝杆菌 | M.gordonae |
10 | 瘰疬分枝杆菌 | M.scrofulaceum |
11 | 龟分枝杆菌 | M.chelonae |
12 | 海分枝杆菌 | M.marinum |
13 | 蟾蜍分枝杆菌 | M.xenopi |
14 | 溃疡分枝杆菌 | M.ulcerans |
15 | 嗜血分枝杆菌 | M.haemophilum |
16 | 玛尔摩分枝杆菌 | M.malmoense |
17 | 耻垢分枝杆菌 | M.smegmatis |
18 | 苏尔加分枝杆菌 | M.szulgai |
19 | 不产色分枝杆菌 | M.nonchromogenicum |
20 | 次要分枝杆菌 | M.triviale |
21 | 土分枝杆菌 | M.terrae |
22 | 猪分枝杆菌 | M.porcinum |
23 | 浅黄分枝杆菌 | M.gilvum |
24 | 草分枝杆菌 | M.phlei |
25 | 胃分枝杆菌 | M.gastri |
26 | 母牛分枝杆菌 | M.vaccae |
27 | 迪氏分枝杆菌 | M.diernhoferi |
28 | 猿分枝杆菌 | M.simiae |
29 | 新金色分枝杆菌 | M.neoaurum |
30 | 金色分枝杆菌 | M.aurum |
31 | 居间分枝杆菌 | M.interjectum |
32 | 奇美拉分枝杆菌 | M.chimaera |
33 | 免疫原分枝杆菌 | M.immunogenum |
34 | 产黏液分枝杆菌 | M.mucogenicum |
35 | 外来分枝杆菌 | M.peregrinum |
36 | 三重分枝杆菌 | M.triplex |
37 | 布兰德分枝杆菌 | M.branderi |
38 | 慢生黄分枝杆菌 | M.lentiflavum |
39 | 副瘰疬分枝杆菌 | M.parascrofulaceum |
40 | 中间分枝杆菌 | M.intermedium |
药物名称 | 耐药基因a | 检测位点 | 密码子/碱基 | 编码氨基酸 |
---|---|---|---|---|
利福平 | rpoBa | 511 | CTG | 亮氨酸(Leu) |
513 | CAA | 谷氨酰胺(Gln) | ||
516 | GAC | 天冬氨酸(Asp) | ||
522 | TCG | 丝氨酸(Ser) | ||
526 | CAC | 组氨酸(His) | ||
531 | TCG | 丝氨酸(Ser) | ||
533 | CTG | 亮氨酸(Leu) | ||
572 | ATC | 异亮氨酸(Ile) | ||
异烟肼 | inhA | -15 | C | / |
katG | 315 | AGC | 丝氨酸(Ser) | |
316 | GGC | 甘氨酸(Gly) | ||
吡嗪酰胺 | pncA | 57 | CAC | 组氨酸(His) |
-11 | A | / | ||
乙胺丁醇 | embB | 306 | ATG | 蛋氨酸(Met) |
406 | GGC | 甘氨酸(Gly) | ||
氟喹诺酮类 | gyrA | 88 | GGC | 甘氨酸(Gly) |
90 | GCG | 丙氨酸(Ala) | ||
91 | TCG | 丝氨酸(Ser) | ||
94 | GAC | 天冬氨酸(Asp) | ||
gyrB | 538 | AAC | 天冬酰胺(Asn) | |
链霉素 | rpsL | 43 | AAG | 赖氨酸(Lys) |
88 | AAG | 赖氨酸(Lys) | ||
乙硫异烟胺/丙硫异烟胺 | inhA | -15 | C | / |
对氨基水杨酸钠 | folC | 43 | ATC | 异亮氨酸(Ile) |
thyA | 202 | ACC | 苏氨酸(Thr) | |
75 | CAC | 组氨酸(His) | ||
阿米卡星 | rrs | 1401 | A | / |
1484 | G | / | ||
卡那霉素 | eis | -14 | C | / |
rrs | 1401 | A | / | |
1402 | C | / | ||
1484 | G | / | ||
卷曲霉素 | rrs | 1401 | A | / |
1402 | C | / | ||
1484 | G | / | ||
环丝氨酸 | alr | 261 | AGC | 丝氨酸(Ser) |
113 | CTG | 亮氨酸(Leu) | ||
ald | 32 | GAA | 谷氨酸(Glu) | |
氯法齐明 | rv0678 | 193 | G | / |
466 | C | / | ||
贝达喹啉 | rv0678 | 193 | G | / |
466 | C | / | ||
利奈唑胺 | rplC | 460 | T | / |
[1] | World Health Organization. Global tuberculosis report 2022. Geneva: World Health Organization, 2022. |
[2] | World Health Organization. Global tuberculosis report 2020. Geneva: World Health Organization, 2020. |
[3] |
Pang Y, An J, Shu W, et al. Epidemiology of Extrapulmonary Tuberculosis among Inpatients, China, 2008—2017. Emerg Infect Dis, 2019, 25(3): 457-464. doi:10.3201/eid2503.180572.
doi: 10.3201/eid2503.180572 pmid: 30789144 |
[4] |
Park M, Kon OM. Use of Xpert MTB/RIF and Xpert Ultra in extrapulmonary tuberculosis. Expert Rev Anti Infect Ther, 2021, 19(1): 65-77. doi:10.1080/14787210.2020.1810565.
doi: 10.1080/14787210.2020.1810565 URL |
[5] |
Rodriguez-Takeuchi SY, Renjifo ME, Medina FJ. Extrapulmonary Tuberculosis: Pathophysiology and Imaging Findings. Radiographics, 2019, 39(7): 2023-2037. doi:10.1148/rg.2019190109.
doi: 10.1148/rg.2019190109 pmid: 31697616 |
[6] |
Mazza-Stalder J, Nicod L, Janssens JP. Extrapulmonary tuberculosis. Rev Mal Respir, 2012, 29(4): 566-578. doi:10.1016/j.rmr.2011.05.021.
doi: 10.1016/j.rmr.2011.05.021 pmid: 22542414 |
[7] |
Brode SK, Daley CL, Marras TK. The epidemiologic relationship between tuberculosis and non-tuberculous mycobacterial disease: a systematic review. Int J Tuberc Lung Dis, 2014, 18(11): 1370-1377. doi:10.5588/ijtld.14.0120.
doi: 10.5588/ijtld.14.0120 pmid: 25299873 |
[8] |
Prevots DR, Marras TK. Epidemiology of human pulmonary infection with nontuberculous mycobacteria: a review. Clin Chest Med, 2015, 36(1): 13-34. doi:10.1016/j.ccm.2014.10.002.
doi: 10.1016/j.ccm.2014.10.002 pmid: 25676516 |
[9] |
Baldwin SL, Larsen SE, Ordway D, et al. The complexities and challenges of preventing and treating nontuberculous mycobacterial diseases. PLoS Negl Trop Dis, 2019, 13(2): e0007083. doi:10.1371/journal.pntd.0007083.
doi: 10.1371/journal.pntd.0007083 |
[10] |
Adjemian J, Frankland TB, Daida YG, et al. Epidemiology of Nontuberculous Mycobacterial Lung Disease and Tuberculosis, Hawaii, USA. Emerg Infect Dis, 2017, 23(3): 439-447. doi:10.3201/eid2303.161827.
doi: 10.3201/eid2303.161827 pmid: 28221128 |
[11] |
Liu CF, Song YM, He WC, et al. Nontuberculous mycobacteria in China: incidence and antimicrobial resistance spectrum from a nationwide survey. Infect Dis Poverty, 2021, 10(1): 59. doi:10.1186/s40249-021-00844-1.
doi: 10.1186/s40249-021-00844-1 |
[12] |
Wang X, Li H, Jiang G, et al. Prevalence and drug resistance of nontuberculous mycobacteria, northern China, 2008—2011. Emerg Infect Dis, 2014, 20(7): 1252-1253. doi:10.3201/eid2007.131801.
doi: 10.3201/eid2007.131801 URL |
[13] |
Tan Y, Su B, Shu W, et al. Epidemiology of pulmonary di-sease due to nontuberculous mycobacteria in Southern China, 2013—2016. BMC Pulm Med, 2018, 18(1): 168. doi:10.1186/s12890-018-0728-z.
doi: 10.1186/s12890-018-0728-z |
[14] |
缪青, 姚雨濛, 潘珏, 等. 宏基因二代测序技术对非结核分枝杆菌感染病原学诊断的价值. 中国临床医学, 2020, 27(4): 559-562. doi:10.12025/j.issn.1008-6358.2020.20201289.
doi: 10.12025/j.issn.1008-6358.2020.20201289 |
[15] | 全国第五次结核病流行病学抽样调查技术指导组, 全国第五次结核病流行病学抽样调查办公室. 2010年全国第五次结核病流行病学抽样调查报告. 中国防痨杂志, 2012, 34 (8): 485-508. |
[16] |
Zhou L, Xu D, Liu H, et al. Trends in the Prevalence and Antibiotic Resistance of Non-tuberculous Mycobacteria in Mainland China, 2000—2019: Systematic Review and Meta-Analysis. Front Public Health, 2020, 8: 295. doi:10.3389/fpubh.2020.00295.
doi: 10.3389/fpubh.2020.00295 pmid: 32850570 |
[17] |
Nishiuchi Y, Iwamoto T, Maruyama F. Infection Sources of a Common Non-tuberculous Mycobacterial Pathogen, Mycobacterium avium Complex. Front Med (Lausanne), 2017, 4: 27. doi:10.3389/fmed.2017.00027.
doi: 10.3389/fmed.2017.00027 |
[18] |
Tan Y, Deng Y, Yan X, et al. Nontuberculous mycobacterial pulmonary disease and associated risk factors in China: A prospective surveillance study. J Infect, 2021, 83(1): 46-53. doi:10.1016/j.jinf.2021.05.019.
doi: 10.1016/j.jinf.2021.05.019 pmid: 34048821 |
[19] |
McShane PJ, Glassroth J. Pulmonary Disease Due to Nontuberculous Mycobacteria: Current State and New Insights. Chest, 2015, 148(6): 1517-1527. doi:10.1378/chest.15-0458.
doi: S0012-3692(15)50117-7 pmid: 26225805 |
[20] |
Boyle DP, Zembower TR, Qi C. Relapse versus Reinfection of Mycobacterium avium Complex Pulmonary Disease. Patient Characteristics and Macrolide Susceptibility. Ann Am Thorac Soc, 2016, 13(11): 1956-1961. doi:10.1513/AnnalsATS.201605-344BC.
doi: 10.1513/AnnalsATS.201605-344BC URL |
[21] |
Koh WJ, Moon SM, Kim SY, et al. Outcomes of Mycobacterium avium complex lung disease based on clinical phenotype. Eur Respir J, 2017, 50(3): 1602503. doi:10.1183/13993003.02503-2016.
doi: 10.1183/13993003.02503-2016 |
[22] |
Gopalaswamy R, Shanmugam S, Mondal R, et al. Of tuberculosis and non-tuberculous mycobacterial infections-a comparative analysis of epidemiology, diagnosis and treatment. J Biomed Sci, 2020, 27(1): 74. doi:10.1186/s12929-020-00667-6.
doi: 10.1186/s12929-020-00667-6 pmid: 32552732 |
[23] |
Lavigne JP, Espinal P, Dunyach-Remy C, et al. Mass spectrometry: a revolution in clinical microbiology? Clin Chem Lab Med, 2013, 51(2): 257-270. doi:10.1515/cclm-2012-0291.
doi: 10.1515/cclm-2012-0291 URL |
[24] |
Holland RD, Wilkes JG, Rafii F, et al. Rapid identification of intact whole bacteria based on spectral patterns using matri-xassisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun Mass Spectrom, 1996, 10(10): 1227-1232. doi:10.1002/(SICI)1097-0231(19960731)10:10<1227::AID-RCM659>3.0.CO;2-6.
doi: 10.1002/(SICI)1097-0231(19960731)10:10<1227::AID-RCM659>3.0.CO;2-6 URL |
[25] |
胡继红, 马筱玲, 王辉, 等. MALDI-TOF MS在临床微生物鉴定中的标准化操作专家共识. 中华检验医学杂志, 2019, 42(4): 241-249. doi:10.3760/cma.j.issn.1009-8158.2019.04.004.
doi: 10.3760/cma.j.issn.1009-8158.2019.04.004 |
[26] |
高晶晶, 王亚南, 杨艺, 等. MALDI-TOF MS技术在快速鉴别肺炎链球菌与口腔/缓症链球菌中的应用. 中华检验医学杂志, 2018, 41(5): 405-407. doi:10.3760/cma.j.issn.1009-9158.2018.05.016.
doi: 10.3760/cma.j.issn.1009-9158.2018.05.016 |
[27] |
胡燕燕, 蔡加昌, 周宏伟, 等. 基质辅助激光解吸/电离飞行时间质谱仪快速鉴别甲氧西林耐药和甲氧西林敏感金黄色葡萄球菌的研究. 中华微生物学和免疫学杂志, 2015, 35(1): 42-45. doi:10.3760/cma.j.issn.0254-5101.2015.01.009.
doi: 10.3760/cma.j.issn.0254-5101.2015.01.009 |
[28] |
Chen XF, Hou X, Xiao M, et al. Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS) Analysis for the Identification of Pathogenic Microorganisms: A Review. Microorganisms, 2021, 9(7): 1536. doi:10.3390/microorganisms9071536.
doi: 10.3390/microorganisms9071536 URL |
[29] |
Alcaide F, Amlerová J, Bou G, et al. How to: identify non-tuberculous Mycobacterium species using MALDI-TOF mass spectrometry. Clin Microbiol Infect, 2018, 24(6): 599-603. doi:10.1016/j.cmi.2017.11.012.
doi: 10.1016/j.cmi.2017.11.012 URL |
[30] |
Genc GE, Demir M, Yaman G, et al. Evaluation of MALDI-TOF MS for identification of nontuberculous mycobacteria isolated from clinical specimens in mycobacteria growth indicator tube medium. New Microbiol, 2018, 41(3): 214-219.
pmid: 29874386 |
[31] |
Mediavilla-Gradolph MC, De Toro-Peinado I, Bermúdez-Ruiz MP, et al. Use of MALDI-TOF MS for Identification of Nontuberculous Mycobacterium Species Isolated from Clinical Specimens. Biomed Res Int, 2015, 2015: 854078. doi:10.1155/2015/854078.
doi: 10.1155/2015/854078 |
[32] |
Neuschlova M, Vladarova M, Kompanikova J, et al. Identification of Mycobacterium Species by MALDI-TOF Mass Spectrometry. Adv Exp Med Biol, 2017, 1021: 37-42. doi:10.1007/5584_2017_26.
doi: 10.1007/5584_2017_26 pmid: 28623484 |
[33] |
Rodríguez-Sánchez B, Ruiz-Serrano MJ, Marín M, et al. Evaluation of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Nontuberculous Mycobacteria from Clinical Isolates. J Clin Microbiol, 2015, 53(8): 2737-2740. doi:10.1128/JCM.01380-15.
doi: 10.1128/JCM.01380-15 pmid: 26063855 |
[34] |
Su KY, Yan BS, Chiu HC, et al. Rapid Sputum Multiplex Detection of the M.tuberculosis Complex (MTBC) and Resis-tance Mutations for Eight Antibiotics by Nucleotide MALDI-TOF MS. Sci Rep, 2017, 7: 41486. doi:10.1038/srep41486.
doi: 10.1038/srep41486 |
[35] |
Nyasinga J, Kyany’a C, Okoth R, et al. A six-member SNP assay on the iPlex MassARRAY platform provides a rapid and affordable alternative for typing major African Staphylococcus aureus types. Access Microbiol, 2019, 1(3): e000018. doi:10.1099/acmi.0.000018.
doi: 10.1099/acmi.0.000018 |
[36] |
Wu X, Tan G, Yang J, et al. Prediction of Mycobacterium tuberculosis drug resistance by nucleotide MALDI-TOF-MS. Int J Infect Dis, 2022, 121: 47-54. doi:10.1016/j.ijid.2022.04.061.
doi: 10.1016/j.ijid.2022.04.061 URL |
[37] |
Shi J, He G, Ning H, et al. Application of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) in the detection of drug resistance of Mycobacterium tuberculosis in re-treated patients. Tuberculosis (Edinb), 2022, 135: 102209. doi:10.1016/j.tube.2022.102209.
doi: 10.1016/j.tube.2022.102209 |
[38] |
侯婧, 王华, 刘盛盛. 基质辅助激光解吸电离飞行时间质谱技术检测支气管肺泡灌洗液对涂阴或无痰肺结核的诊断价值. 实用医学杂志, 2022, 38(13): 1599-1603. doi:10.3969/j.issn.1006-5725.2022.13.006.
doi: 10.3969/j.issn.1006-5725.2022.13.006 |
[39] |
Yang H, Li A, Dang L, et al. A rapid, accurate, and low-cost method for detecting Mycobacterium tuberculosis and its drug-resistant genes in pulmonary tuberculosis: Applications of MassARRAY DNA mass spectrometry. Front Microbiol, 2023, 14: 1093745. doi:10.3389/fmicb.2023.1093745.
doi: 10.3389/fmicb.2023.1093745 |
[40] | World Health Organization. The use of next-generation sequencing technologies for the detection of mutations associated with drug resistance in Mycobacterium tuberculosis complex: technical guide. Geneva: World Health Organization, 2018. |
[41] | World Health Organization. Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance. Geneva: World Health Organization, 2021. |
[42] |
Liu D, Huang F, Zhang G, et al. Whole-genome sequencing for surveillance of tuberculosis drug resistance and determination of resistance level in China. Clin Microbiol Infect, 2022, 28(5): 731. e9-731.e15. doi:10.1016/j.cmi.2021.09.014.
doi: 10.1016/j.cmi.2021.09.014 |
[43] |
Wang G, Jiang G, Jing W, et al. Prevalence and molecular characterizations of seven additional drug resistance among multidrug-resistant tuberculosis in China: A subsequent study of a national survey. J Infect, 2021, 82(3): 371-377. doi:10.1016/j.jinf.2021.02.004.
doi: 10.1016/j.jinf.2021.02.004 pmid: 33556430 |
[44] |
Pantel A, Petrella S, Veziris N, et al. Extending the definition of the GyrB quinolone resistance-determining region in Mycobacterium tuberculosis DNA gyrase for assessing fluoroquinolone resistance in M.tuberculosis. Antimicrob Agents Chemother, 2012, 56(4):1990-1996. doi:10.1128/AAC.06272-11.
doi: 10.1128/AAC.06272-11 pmid: 22290942 |
[45] | 中华人民共和国国务院. 病原微生物实验室生物安全管理条例. 国务院令第424号. 2004-11-12. |
[46] | 中华人民共和国卫生部. 可感染人类的高致病性病原微生物菌(毒)种或样本运输管理规定. 卫生部令第45号. 2008-11-26. |
[47] | 中华人民共和国国际民用航空组织. 危险物品安全航空运输技术细则(2011—2012年版). 2011-01-01. |
[48] | 中华人民共和国卫生部. 医疗机构临床实验室管理办法. 卫医发〔2006〕73号. 2006-02-27. |
[49] | 中华人民共和国国家卫生和计划生育委员会. 医学检验实验室基本标准和管理规范(试行). 国卫医发〔2016〕37号. 2016-07-20. |
[50] | 中华人民共和国国家卫生和计划生育委员会. WS 288—2017肺结核诊断. 2017-11-09. |
[51] |
Griffith DE, Aksamit T, Brown-Elliott BA, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med, 2007, 175(4): 367-416. doi:10.1164/rccm.200604-571ST.
doi: 10.1164/rccm.200604-571ST URL |
[52] |
中华医学会结核病学分会. 非结核分枝杆菌病诊断与治疗指南(2020年版). 中华结核和呼吸杂志, 2020, 43(11): 918-946. doi:10.3760/cma.j.cn112147-20200508-00570.
doi: 10.3760/cma.j.cn112147-20200508-00570 |
[53] |
Hameed HMA, Fang C, Liu Z, et al. Characterization of Genetic Variants Associated with Rifampicin Resistance Level in Mycobacterium tuberculosis Clinical Isolates Collected in Guangzhou Chest Hospital, China. Infect Drug Resist, 2022, 15: 5655-5666. doi:10.2147/IDR.S375869.
doi: 10.2147/IDR.S375869 pmid: 36193294 |
[54] |
Mon AS, Ei PW, Htwe MM, et al. First Detection of Mycobacterium tuberculosis Clinical Isolates Harboring I491F Borderline Resistance rpoB Mutation in Myanmar. Antimicrob Agents Chemother, 2022, 66(12): e0092522. doi:10.1128/aac.00925-22.
doi: 10.1128/aac.00925-22 |
[55] |
Krittanan P, Srimanote P, Thawornwan U, et al. Spoligotype-based population structure and isoniazid-resistance gene mutation of Mycobacterium tuberculosis isolates from Thailand. J Glob Antimicrob Resist, 2022, 30:319-325. doi:10.1016/j.jgar.2022.06.013.
doi: 10.1016/j.jgar.2022.06.013 pmid: 35732265 |
[56] |
Kiepiela P, Bishop KS, Smith AN, et al. Genomic mutations in the katG, inhA and aphC genes are useful for the prediction of isoniazid resistance in Mycobacterium tuberculosis isolates from Kwazulu Natal, South Africa. Tuber Lung Dis, 2000, 80(1): 47-56. doi:10.1054/tuld.1999.0231.
doi: 10.1054/tuld.1999.0231 URL |
[57] |
CRyPTIC Consortium. Epidemiological cut-off values for a 96-well broth microdilution plate for high-throughput research antibiotic susceptibility testing of M.tuberculosis. Eur Respir J, 2022, 60(4): 2200239. doi:10.1183/13993003.00239-2022.
doi: 10.1183/13993003.00239-2022 |
[58] |
Pinhata JMW, Brandao AP, Mendes FF, et al. Correlating genetic mutations with isoniazid phenotypic levels of resistance in Mycobacterium tuberculosis isolates from patients with drug-resistant tuberculosis in a high burden setting. Eur J Clin Microbiol Infect Dis, 2021, 40(12): 2551-2561. doi:10.1007/s10096-021-04316-0.
doi: 10.1007/s10096-021-04316-0 |
[59] |
Madison B, Robinson-Dunn B, George I, et al. Multicenter evaluation of ethambutol susceptibility testing of Mycobacterium tuberculosis by agar proportion and radiometric methods. J Clin Microbiol, 2002, 40(11): 3976-3979. doi:10.1128/JCM.40.11.3976-3979.2002.
doi: 10.1128/JCM.40.11.3976-3979.2002 pmid: 12409361 |
[60] |
Puyén ZM, Santos-Lázaro D, Vigo AN, et al. Evaluation of the broth microdilution plate methodology for susceptibility testing of Mycobacterium tuberculosis in Peru. BMC Infect Dis, 2022, 22(1): 705. doi:10.1186/s12879-022-07677-9.
doi: 10.1186/s12879-022-07677-9 |
[61] | World Health Organization. Technical manual for drug susceptibility testing of medicines used in the treatment of tuberculosis. Geneva: World Health Organization, 2018. |
[62] |
王玉峰, 逄宇. 世界卫生组织《结核分枝杆菌耐药相关基因突变目录及其临床应用指南》解读. 中国临床新医学, 2022, 15(10): 900-906. doi:10.3969/j.issn.1674-3806.2022.10.03.
doi: 10.3969/j.issn.1674-3806.2022.10.03 |
[63] |
Maitre T, Petitjean G, Chauffour A, et al. Are moxifloxacin and levofloxacin equally effective to treat XDR tuberculosis? J Antimicrob Chemother, 2017, 72(8): 2326-2333. doi:10.1093/jac/dkx150.
doi: 10.1093/jac/dkx150 pmid: 28535203 |
[64] |
Seifert M, Capparelli E, Catanzaro DG, et al. Using Mycobacterium tuberculosis Single-Nucleotide Polymorphisms To Predict Fluoroquinolone Treatment Response. Antimicrob Agents Chemother, 2019, 63(7): e00076-19. doi:10.1128/AAC.00076-19.
doi: 10.1128/AAC.00076-19 |
[65] |
Morlock GP, Metchock B, Sikes D, et al. ethA, inhA, and katG loci of ethionamide-resistant clinical Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother, 2003, 47(12): 3799-3805. doi:10.1128/AAC.47.12.3799-3805.2003.
doi: 10.1128/AAC.47.12.3799-3805.2003 pmid: 14638486 |
[66] |
Brankin A, Seifert M, Georghiou SB, et al. In silico evaluation of WHO-endorsed molecular methods to detect drug resistant tuberculosis. Sci Rep, 2022, 12(1): 17741. doi:10.1038/s41598-022-21025-6.
doi: 10.1038/s41598-022-21025-6 pmid: 36273016 |
[67] |
He W, Liu C, Liu D, et al. Prevalence of Mycobacterium tuberculosis resistant to bedaquiline and delamanid in China. J Glob Antimicrob Resist, 2021, 26: 241-248. doi:10.1016/j.jgar.2021.06.007.
doi: 10.1016/j.jgar.2021.06.007 URL |
[68] |
Hu Y, Fan J, Zhu D, et al. Investigation of bedaquiline resis-tance and genetic mutations in multi-drug resistant Mycobacterium tuberculosis clinical isolates in Chongqing, China. Ann Clin Microbiol Antimicrob, 2023, 22(1): 19. doi:10.1186/s12941-023-00568-0.
doi: 10.1186/s12941-023-00568-0 |
[69] |
Zhang S, Chen J, Cui P, et al. Identification of novel mutations associated with clofazimine resistance in Mycobacterium tuberculosis. J Antimicrob Chemother, 2015, 70(9): 2507-2510. doi:10.1093/jac/dkv150.
doi: 10.1093/jac/dkv150 pmid: 26045528 |
[70] |
Traoré AN, Rikhotso MC, Banda NT, et al. Effectiveness of the Novel Anti-TB Bedaquiline against Drug-Resistant TB in Africa: A Systematic Review of the Literature. Pathogens, 2022, 11(6): 636. doi:10.3390/pathogens11060636.
doi: 10.3390/pathogens11060636 URL |
[71] |
Kabahita JM, Kabugo J, Kakooza F, et al. First report of whole-genome analysis of an extensively drug-resistant Mycobacterium tuberculosis clinical isolate with bedaquiline, linezolid and clofazimine resistance from Uganda. Antimicrob Resist Infect Control, 2022, 11(1): 68. doi:10.1186/s13756-022-01101-2.
doi: 10.1186/s13756-022-01101-2 |
[72] |
Kadura S, King N, Nakhoul M, et al. Systematic review of mutations associated with resistance to the new and repurposed Mycobacterium tuberculosis drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid. J Antimicrob Chemother, 2020, 75(8): 2031-2043. doi:10.1093/jac/dkaa136.
doi: 10.1093/jac/dkaa136 pmid: 32361756 |
[73] |
Li Z, Liu F, Chen H, et al. A five-year review of prevalence and treatment outcomes of pre-extensively drug-resistant plus additional drug-resistant tuberculosis in the Henan Provincial Tuberculosis Clinical Medicine Research Centre. J Glob Antimicrob Resist, 2022, 31:328-336. doi:10.1016/j.jgar.2022.09.010.
doi: 10.1016/j.jgar.2022.09.010 pmid: 36210030 |
[74] |
Wu X, Shang Y, Ren W, et al. Minimum inhibitory concentration of cycloserine against Mycobacterium tuberculosis using the MGIT 960 system and a proposed critical concentration. Int J Infect Dis, 2022, 121: 148-151. doi:10.1016/j.ijid.2022.05.030.
doi: 10.1016/j.ijid.2022.05.030 URL |
[75] |
Zhang X, Liu L, Zhang Y, et al. Genetic determinants involved in p-aminosalicylic acid resistance in clinical isolates from tuberculosis patients in northern China from 2006 to 2012. Antimicrob Agents Chemother, 2015, 59(2): 1320-1324. doi:10.1128/AAC.03695-14.
doi: 10.1128/AAC.03695-14 pmid: 25421465 |
[76] |
Wang W, Li S, Ge Q, et al. Determination of critical concentration for drug susceptibility testing of Mycobacterium tuberculosis against para-aminosalicylic acid with clinical isolates with thyA, folC and dfrA mutations. Ann Clin Microbiol Antimicrob, 2022, 21(1): 48. doi:10.1186/s12941-022-00537-z.
doi: 10.1186/s12941-022-00537-z |
[77] |
Bastian S, Veziris N, Roux AL, et al. Assessment of clari-thromycin susceptibility in strains belonging to the Mycobacterium abscessus group by erm(41) and rrl sequencing. Antimicrob Agents Chemother, 2011, 55(2): 775-781. doi:10.1128/AAC.00861-10.
doi: 10.1128/AAC.00861-10 URL |
[78] |
Wallace RJ Jr, Meier A, Brown BA, et al. Genetic basis for clarithromycin resistance among isolates of Mycobacterium chelonae and Mycobacterium abscessus. Antimicrob Agents Chemother, 1996, 40(7): 1676-1681. doi:10.1128/AAC.40.7.1676.
doi: 10.1128/AAC.40.7.1676 pmid: 8807061 |
[79] |
Rubio M, March F, Garrigó M, et al. Inducible and Acquired Clarithromycin Resistance in the Mycobacterium abscessus Complex. PLoS One, 2015, 10(10): e0140166. doi:10.1371/journal.pone.0140166.
doi: 10.1371/journal.pone.0140166 |
[80] |
Huh HJ, Kim SY, Jhun BW, et al. Recent advances in molecular diagnostics and understanding mechanisms of drug resis-tance in nontuberculous mycobacterial diseases. Infect Genet Evol, 2019, 72: 169-182. doi:10.1016/j.meegid.2018.10.003.
doi: 10.1016/j.meegid.2018.10.003 URL |
[81] |
Chung ES, Johnson WC, Aldridge BB. Types and functions of heterogeneity in mycobacteria. Nat Rev Microbiol, 2022, 20(9):529-541. doi:10.1038/s41579-022-00721-0.
doi: 10.1038/s41579-022-00721-0 pmid: 35365812 |
[82] |
Operario DJ, Koeppel AF, Turner SD, et al. Prevalence and extent of heteroresistance by next generation sequencing of multidrug-resistant tuberculosis. PLoS One, 2017, 12(5): e0176522. doi:10.1371/journal.pone.0176522.
doi: 10.1371/journal.pone.0176522 |
[83] |
Folkvardsen DB, Thomsen VØ, Rigouts L, et al. Rifampin heteroresistance in Mycobacterium tuberculosis cultures as detected by phenotypic and genotypic drug susceptibility test methods. J Clin Microbiol, 2013, 51(12): 4220-4222. doi:10.1128/JCM.01602-13.
doi: 10.1128/JCM.01602-13 pmid: 24068005 |
[84] |
Werngren J, Mansjö M, Glader M, et al. Detection of Pyrazinamide Heteroresistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2021, 65(9): e0072021. doi:10.1128/AAC.00720-21.
doi: 10.1128/AAC.00720-21 |
[85] |
Zhang X, Zhao B, Liu L, et al. Subpopulation analysis of heteroresistance to fluoroquinolone in Mycobacterium tuberculosis isolates from Beijing, China. J Clin Microbiol, 2012, 50(4): 1471-1474. doi:10.1128/JCM.05793-11.
doi: 10.1128/JCM.05793-11 URL |
[86] |
Liang B, Tan Y, Li Z, et al. Highly Sensitive Detection of Isoniazid Heteroresistance in Mycobacterium tuberculosis by DeepMelt Assay. J Clin Microbiol, 2018, 56(2): e01239-17. doi:10.1128/JCM.01239-17.
doi: 10.1128/JCM.01239-17 |
[87] |
Zhang X, Zhao B, Huang H, et al. Co-occurrence of amikacin-resistant and -susceptible Mycobacterium tuberculosis isolates in clinical samples from Beijing, China. J Antimicrob Chemother, 2013, 68(7): 1537-1542. doi:10.1093/jac/dkt082.
doi: 10.1093/jac/dkt082 URL |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||