Chinese Journal of Antituberculosis ›› 2023, Vol. 45 ›› Issue (5): 446-453.doi: 10.19982/j.issn.1000-6621.20220535
• Special Topic • Previous Articles Next Articles
Li Shanshan1, Wang Yufeng2, Shu Wei3, Pang Yu1()
Received:
2023-01-19
Online:
2023-05-10
Published:
2023-04-25
Contact:
Pang Yu
E-mail:pangyupound@163.com
Supported by:
CLC Number:
Li Shanshan, Wang Yufeng, Shu Wei, Pang Yu. Progress and reflections on development of laboratory diagnostic technology for tuberculosis[J]. Chinese Journal of Antituberculosis, 2023, 45(5): 446-453. doi: 10.19982/j.issn.1000-6621.20220535
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20220535
[1] | World Health Organization.Global tuberculosis report 2022. Geneva: World Health Organization, 2022. |
[2] | World Health Organization. WHO operational handbook on tuberculosis. Module 3: diagnosis-rapid diagnostics for tuberculosis detention, 2021 update. Geneva: World Health Organi-zation, 2021. |
[3] |
逄宇, 王玉峰, 高兴辉, 等. 结核病实验室检测产品和技术应用进展. 中国临床新医学, 2021, 14(1):23-34. doi:10.3969/j.issn.1674-3806.2021.01.05.
doi: 10.3969/j.issn.1674-3806.2021.01.05 |
[4] | 中华人民共和国国家卫生和计划生育委员会.WS 288—2017 肺结核诊断. 2017-11-09. |
[5] |
Azman AS, Golub JE, Dowdy DW. How much is tuberculosis screening worth? Estimating the value of active case finding for tuberculosis in South Africa, China, and India. BMC Med, 2014, 12:216. doi:10.1186/s12916-014-0216-0.
doi: 10.1186/s12916-014-0216-0 pmid: 25358459 |
[6] |
Chen JO, Qiu YB, Rueda ZV, et al. Role of community-based active case finding in screening tuberculosis in Yunnan province of China. Infect Dis Poverty, 2020, 9(1):7. doi:10.1186/s40249-020-0625-6.
doi: 10.1186/s40249-020-0625-6 |
[7] |
Rangaka MX, Cavalcante SC, Marais BJ, et al. Controlling the seedbeds of tuberculosis: diagnosis and treatment of tuberculosis infection. Lancet, 2015, 386(10010): 2344-2353. doi:10.1016/S0140-6736(15)00323-2.
doi: 10.1016/S0140-6736(15)00323-2 pmid: 26515679 |
[8] |
Steingart KR, Henry M, Ng V, et al. Fluorescence versus conventional sputum smear microscopy for tuberculosis: a systematic review. Lancet Infect Dis, 2006, 6:570-581. doi:10.1016/S1473-3099(06)70578-3.
doi: 10.1016/S1473-3099(06)70578-3 pmid: 16931408 |
[9] |
Anthony RM, Kolk AH, Kuijper S, et al. Light emitting diodes for auramine O fluorescence microscopic screening of Mycobacterium tuberculosis. Int J Tuberc Lung Dis, 2006, 10:1060-1062.
pmid: 16964802 |
[10] |
Bennedsen J, Larsen SO. Examination for tubercle bacili by fluorescence microscopy. Scand J Respir Dis, 1966, 47:114-120.
pmid: 4161476 |
[11] |
Middlebrook G, Cohn ML. Bacteriology of tuberculosis: Laboratory Methods. Am J Pub Health, 1958, 48(7):844-853. doi:10.2105/ajph.48.7.844.
doi: 10.2105/ajph.48.7.844 |
[12] |
DeLand FH, Wagner RN Jr. Early detection of bacterial growth with carbon-14 labeled glucose. Radiology, 1969, 92(1):154-155. doi:10.1148/92.1.154.
doi: 10.1148/92.1.154 pmid: 5762072 |
[13] |
Wilson SM, McNerney R, Nye PM, et al. Progress toward a simplified polymerase chain reaction and its application to diagnosis of tuberculosis. J Clin Microbiol, 1993, 31(4):776-782. doi:10.1128/jcm.31.4.776-782.
doi: 10.1128/jcm.31.4.776-782.1993 pmid: 8463386 |
[14] |
Noordhoek GT, Kolk AH, Bjune G, et al. Sensitivity and specificity of PCR for detection of Mycobacterium tuberculosis: a blind comparison study among seven laboratories. J Clin Microbiol, 1994, 32(2):277-284. doi:10.1128/jcm.32.2.277-284.1994.
doi: 10.1128/jcm.32.2.277-284.1994 pmid: 8150935 |
[15] | World Health Organization. The use of loop-mediated isothermal amplification (TB-LAMP) for the diagnosis of pulmonary tuberculosis. Policy guidance. Geneva: World Health Organization, 2016. |
[16] | World Health Organization. Molecular line probe assay for rapid screening of patients at risk of multidrug-resistant tuberculosis (MDR-TB). Policy statement. Geneva: World Health Organization, 2008. |
[17] | World Health Organization. Policy statement: automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF system. Geneva: World Health Organization, 2011. |
[18] | World Health Organization. WHO meeting report of a technical expert consultation:non-inferiority analysis of Xpert MTF/RIF Ultra compared to Xpert MTB/RIF. Geneva: World Health Organization, 2017. |
[19] | World Health Organization. Molecular assays intended as initial tests for the diagnosis of pulmonary and extrapulmonary TB and rifampicin resistance in adults and children: rapid communication. Policy update. Geneva: World Health Organization, 2020. |
[20] | World Health Organization. Commercial sero-diagnostic tests for diagnosis of tuberculosis: policy statement. Geneva: World Health Organization, 2011. |
[21] | World Health Organization. WHO warns against the use of inaccurate blood tests for active tuberculosis. Geneva: World Health Organization, 2011. |
[22] | World Health Organization. The use of lateral flow urine lipoarabinomannan assay (LF-LAM) for the diagnosis and screening of active tuberculosis in people living with HIV. Policy guidance. Geneva: World Health Organization, 2015. |
[23] | World Health Organization. Latent tuberculosis infection: Updated and consolidated guidelines for programmatic management. Geneva: World Health Organization, 2018. |
[24] | World Health Organization. WHO consolidated guidelines on tuberculosis. Module 3: Diagnosis—Tests for tuberculosis infection. Geneva: World Health Organization, 2022. |
[25] |
Heifets L, Sanchez T. New agar medium for testing susceptibility of Mycobacterium tuberculosis to pyrazinamide. J Clin Microbiol, 2000, 38(4):1498-1501. doi:10.1128/JCM.38.4.1498-1501.2000.
doi: 10.1128/JCM.38.4.1498-1501.2000 pmid: 10747133 |
[26] | World Health Organization. WHO consolidated guidelines on tuberculosis. Module 3: diagnosis-rapid diagnostics for tuberculosis detection, 2021 update. Geneva: World Health Organi-zation, 2021. |
[27] |
Yan LP, Tang SJ, Yang Y, et al. A Large Cohort Study on the Clinical Value of Simultaneous Amplification and Testing for the Diagnosis of Pulmonary Tuberculosis. Medicine (Baltimore), 2016, 95(4):e2597. doi:10.1097/MD.0000000000002597.
doi: 10.1097/MD.0000000000002597 URL |
[28] |
Zhang ZM, Du J, Liu T, et al. EasyNAT MTC assay: A simple, rapid, and low-cost cross-priming amplification method for the detection of Mycobacterium tuberculosis suitable for point-of-care testing. Emerg Microbes Infect, 2021, 10(1):1530-1535. doi:10.1080/22221751.2021.1959271.
doi: 10.1080/22221751.2021.1959271 URL |
[29] |
Quan ST, Jiang TT, Jiao WW, et al. A Novel Cross-Priming Amplification-Based Assay for Tuberculosis Diagnosis in Children Using Gastric Aspirate. Front Microbiol, 2022, 13:819654. doi:10.3389/fmicb.2022.819654.
doi: 10.3389/fmicb.2022.819654 URL |
[30] | 马晓光, 李辉, 石洁, 等. 荧光PCR探针熔解曲线法检测结核分枝杆菌耐异烟肼突变. 现代预防医学, 2013, 40(22):4201-4207. |
[31] |
王峰, 崔运勇, 胡思玉, 等. 实时聚合酶联反应熔解曲线法快速检测耐药多结核病分枝杆菌. 中华结核和呼吸杂志, 2011, 34(12):888-892. doi:10.3760/cma.j.jssn.1001-0939.2011.12.003.
doi: 10.3760/cma.j.jssn.1001-0939.2011.12.003 |
[32] |
Sun Y, Gao L, Xia H, et al. Accuracy of molecular diagnostic tests for drug-resistant tuberculosis detection in China: a systematic review. Int J Tuberc Lung Dis, 2019, 23(8):931-942. doi:10.5588/ijtld.18.0550.
doi: 10.5588/ijtld.18.0550 pmid: 31533884 |
[33] | World Health Organization. Use of alternative interferon-gamma release assays for the diagnosis of TB infection: WHO policy statement. Geneva: World Health Organization, 2022. |
[34] |
You E, Kim MH, Lee WI, et al. Evaluation of IL-2, IL-10, IL-17 and IP-10 as potent discriminative markers for active tuberculosis among pulmonary tuberculosis suspects. Tuberculosis, 2016, 99:100-108. doi:10.1016/j.tube.2016.04.009.
doi: 10.1016/j.tube.2016.04.009 pmid: 27450011 |
[35] |
Pankhurst LJ, Del Ojo Elias C, Votintseva AA, et al. Rapid, comprehensive, and afordable mycobacterial diagnosis with whole-genome sequencing: a prospective study. Lancet Respir Med, 2016, 4(1):49-58. doi:10.1016/S2213-2600(15)00466-X.
doi: 10.1016/S2213-2600(15)00466-X pmid: 26669893 |
[36] |
Finci I, Albertini A, Merker M, et al. Investigating resistance in clinical Mycobacterium tuberculosis complex isolates with genomic and phenotypic antimicrobial susceptibility testing: a multicentre observational study. Lancet Microbe, 2022, 3(9): e672-e682. doi:10.1016/S2666-5247(22)00116-1.
doi: 10.1016/S2666-5247(22)00116-1. URL |
[37] |
Walker TM, Miotto P, Köser CU, et al. The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: A genotypic analysis. Lancet Microbe, 2022, 3(4):e265-e273. doi:10.1016/S2666-5247(21)00301-3.
doi: 10.1016/S2666-5247(21)00301-3. URL |
[38] |
Broger T, Nicol MP, Sigal GB, et al. Diagnostic accuracy of 3 urine lipoarabinomannan tuberculosis assays in HIV-negative outpatients. J Clin Invest, 2020, 130(11):5756-5764. doi:10.1172/JCI140461.
doi: 10.1172/JCI140461 URL |
[39] |
Liu C, Zhao Z, Fan J, et al. Quantification of circulating Mycobacterium tuberculosis antigen peptides allows rapid diagnosis of active disease and treatment monitoring. Proc Natl Acad Sci U S A, 2017, 114(15):3969-3974. doi:10.1073/pnas.1621360114.
doi: 10.1073/pnas.1621360114 URL |
[40] |
Liu C, Lyon CJ, Bu Y, et al. Clinical Evaluation of a Blood Assay to Diagnose Paucibacillary Tuberculosis via Bacterial Antigens. Clin Chem, 2018, 64(5):791-800. doi:10.1373/clinchem.2017.273698.
doi: 10.1373/clinchem.2017.273698 pmid: 29348166 |
[41] |
Seifert M, Vargas E, Ruiz-Valdepeñas Montiel V, et al. Detection and quantification of Mycobacterium tuberculosis antigen CFP 10 in serum and urine for the rapid diagnosis of active tuberculosis disease. Sci Rep, 2021, 11(1):19193. doi:10.1038/s41598-021-98471-1.
doi: 10.1038/s41598-021-98471-1 pmid: 34584117 |
[42] |
Phunpae P, Chanwong S, Tayapiwatana C, et al. Rapid diagnosis of tuberculosis by identification of Antigen 85 in mycobacterial culture system. Diagn Microbiol Infect Dis, 2014, 78 (3): 242-248. doi:10.1016/j.diagmicrobio.2013.11.028.
doi: 10.1016/j.diagmicrobio.2013.11.028 URL |
[43] |
Peláez EC, Estevez MC, Mongui A, et al. Detection and Quantification of HspX Antigen in Sputum Samples Using Plasmonic Biosensing: Toward a Real Point-of-Care (POC) for Tuberculosis Diagnosis. ACS Infec Dis, 2020, 6(5):1110-1120. doi:10.1021/acsinfecdis.9b00502.
doi: 10.1021/acsinfecdis.9b00502 URL |
[44] |
Cao XJ, Li YP, Wang JY, et al. MPT 64 assays for the rapid detection of Mycobacterium tuberculosis. BMC Infect Dis, 2021, 21:336. doi:10.1186/s12879-021-06022-w.
doi: 10.1186/s12879-021-06022-w |
[45] |
Gupta RK, Turner CT, Venturini C, et al. Concise whole blood transcriptional signatures for incipient tuberculosis: a systematic review and patient-level pooled meta-analysis. Lancet Respir Med, 2020, 8(4):395-406. doi:10.1016/s2213-2600(19)30282-6.
doi: 10.1016/S2213-2600(19)30282-6 pmid: 31958400 |
[46] |
Sutherland SJ, Spuy VG, Gindeh A, et al. Diagnostic Accuracy of the Cepheid 3-gene Host Response Fingerstick Blood Test in a Prospective, Multi-site Study: Interim Results. Clin Infect Dis, 2022, 74(12): 2136-2141. doi:10.1093/cid/ciab839.
doi: 10.1093/cid/ciab839 URL |
[47] |
Ahmad R, Xie L, Pyle M, et al. A rapid triage test for active pulmonary tuberculosis in adult patients with persistent cough. Sci Transl Med, 2019, 11(515): eaaw8287. doi:10.1126/scitranslmed.aaw8287.
doi: 10.1126/scitranslmed.aaw8287 URL |
[48] |
Zetola NM, Modongo C, Matsiri O, et al. Diagnosis of pulmonary tuberculosis and assessment of treatment response through analyses of volatile compound patterns in exhaled breath samples. J Infect, 2017, 74(4):367-376. doi:10.1016/j.jinf.2016.12.006.
doi: S0163-4453(16)30336-X pmid: 28017825 |
[49] |
Coronel Teixeira R, Rodríguez M, Jiménez de Romero N, et al. The potential of a portable, point-of-care electronic nose to diagnose tuberculosis. J Infect, 2017, 75(5):441-447. doi:10.1016/j.jinf.2017.08.003.
doi: S0163-4453(17)30260-8 pmid: 28804027 |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[4] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[5] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[6] | Senior Department of Tuberculosis, the 8th Medical Center of Chinese PLA General Hospital , Editorial Board of Chinese Journal of Antituberculosis , Basic and Clinical Speciality Committees of Tuberculosis Control Branch of China International Exchange , Promotive Association for Medical and Health Care . Expert consensus on multidisciplinary diagnosis and treatment of tuberculous peritonitis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 243-257. |
[7] | Duan Hongfei, Tao Yong. Interpretation of social organization standard of Diagnosis Specification of Intraocular Tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 258-261. |
[8] | Li Leilei, Shi Lei, Wang Lin, Li Hongwei, Xu Liran, Pang Yu, Song Yanzheng. Clinical characteristics analysis of HIV-infected cases diagnosed with tuberculosis after surgery due to pulmonary nodules [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 266-273. |
[9] | Jia Hui, Jing Hui, Ling Xiaojie, Wang Yan, Li Xuezheng. The diagnostic value of GeneXpert MTB/RIF Ultra in detecting sputum samples for newly diagnosed pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 298-304. |
[10] | Shi Yuru, Gu Dejian, Wu Jing, Liu Ting, Qin Linghan, Yue Li, Qi Yingjie. Diagnostic value of probe capture-based targeted next-generation sequencing and metagenomic next-generation sequencing for detecting Mycobacterium tuberculosis in bronchoalveolar lavage fluid [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 305-311. |
[11] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[12] | Yang Ziyi, Chen Suting. Research progress on bedaquiline resistance and drug resistance diagnosis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 374-379. |
[13] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[14] | Qiu Yong, Quan Zhuo, Qu Rong, Tian Fajun, Li Meng, Wang Gengsheng, Wang Ya, Guo Mingcheng, Gao Qian. Evaluation of different tuberculosis diagnostic tools for detecting patients in a primary-level clinic in rural China: a real-world retrospective study [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 181-188. |
[15] | Expert Consensus on the Diagnosis and Treatment of Spinal Tuberculosis Combined with HIV/AIDS Patients Group, Combined with HIV/AIDS Patients Group Chinese Antituberculosis Association, Chinese Antituberculosis Association of STD and AIDS Prevention and Control, the Western China Bone Tuberculosis Alliance, the North China Bone the North China Bone. Expert consensus on diagnosis and treatment of spinal tuberculosis with HIV/AIDS (2nd Edition) [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 1-11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||