Chinese Journal of Antituberculosis ›› 2022, Vol. 44 ›› Issue (12): 1327-1337.doi: 10.19982/j.issn.1000-6621.20220303
• Original Articles • Previous Articles Next Articles
Wang Yajuan, Cao Xinyi, Liu Shengming()
Received:
2022-08-08
Online:
2022-12-10
Published:
2022-12-02
Contact:
Liu Shengming
E-mail:tlsm@jnu.edu.cn
CLC Number:
Wang Yajuan, Cao Xinyi, Liu Shengming. Meta-analysis of the diagnostic value of metagenomic next-generation sequencing and GeneXpert MTB/RIF in tuberculosis[J]. Chinese Journal of Antituberculosis, 2022, 44(12): 1327-1337. doi: 10.19982/j.issn.1000-6621.20220303
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20220303
序号 | 检索词 |
---|---|
1 | 'tuberculosis'/exp |
2 | 'mycobacteriosis'/exp |
3 | tuberculos*:ab,kw,ti |
4 | 'infection*, mycobacterium tuberculosis':ab,kw,ti |
5 | 'mycobacterium tuberculosis infection*':ab,kw,ti |
6 | tb:ab,kw,ti |
7 | 'koch* disease':ab,kw,ti |
8 | #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 |
9 | 'metagenomic next-generation sequencing':ab,kw,ti |
10 | 'next-generation sequencing':ab,kw,ti |
11 | 'metagenomic sequencing':ab,kw,ti |
12 | 'metagenom*':ab,kw,ti |
13 | mngs:ab,kw,ti |
14 | ngs:ab,kw,ti |
15 | #9 OR #10 OR #11 OR #12 OR #13 OR #14 |
16 | 'xpert'/exp |
17 | xpert:ab,kw,ti |
18 | 'xpert mtb/rif':ab,kw,ti |
19 | 'genexpert mtb/rif':ab,kw,ti |
20 | genexpert:ab,kw,ti |
21 | #16 OR #17 OR #18 OR #19 OR #20 |
22 | #8 AND #15 AND #21 |
第一作者 | 发表年份 | 研究设计 | 国家 | 样本来源 | 样本例数 | 年龄(岁) | 女性(例) | 标本类型 | 诊断标准 |
---|---|---|---|---|---|---|---|---|---|
李倩[ | 2021 | / | 中国 | 医院 | 100 | >18 | 33 | 胸腔积液 | BD 960培养 |
周晛[ | 2018 | 前瞻性 | 中国 | 医院 | 31 | >18 | / | 肺及肺外 | 临床诊断 |
林爱清[ | 2020 | 前瞻性 | 中国 | 医院 | 50 | >18 | 20 | 脑脊液 | 临床诊断 |
Chen[ | 2022 | 回顾性 | 中国 | 医院 | 216 | >18 | 83 | 脑脊液 | 专家共识a |
Yu[ | 2021 | 回顾性 | 中国 | 医院 | 37 | >18 | 14 | 脑脊液 | 专家共识a |
Shi[ | 2020 | 前瞻性 | 中国 | 医院 | 110 | 平均44.74 | 45 | 肺泡灌洗液 | CRS |
马海畅[ | 2020 | 回顾性 | 中国 | 医院 | 23 | / | / | 脑脊液 | 专家共识a |
Liu[ | 2021 | 回顾性 | 中国 | 医院 | 322 | 平均46.74 | 103 | 肺泡灌洗液 | CRS |
Zhou[ | 2019 | 前瞻性 | 中国 | 医院 | 105 | 平均47.56 | 33 | 肺及肺外 | CRS |
Yan[ | 2020 | 回顾性 | 中国 | 医院 | 51 | >18 | 10 | 脑脊液 | 专家共识a |
孙雯雯[ | 2021 | 回顾性 | 中国 | 医院 | 205 | >18 | 85 | 肺及肺外 | CRS |
Xu[ | 2022 | 回顾性 | 中国 | 医院 | 94 | 52.02±17.81 | 50 | 肺泡灌洗液 | CRS |
第一作者 | mNGS | Xpert | mNGS+Xpert | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TP值 | FP值 | FN值 | TN值 | TP值 | FP值 | FN值 | TN值 | TP值 | FP值 | FN值 | TN值 | |
李倩[ | 70 | 4 | 10 | 16 | 64 | 7 | 16 | 13 | / | / | / | / |
周晛[ | 8 | 0 | 8 | 15 | 6 | 0 | 10 | 15 | 11 | 0 | 5 | 15 |
林爱清[ | 20 | 0 | 14 | 16 | 13 | 0 | 21 | 16 | 22 | 0 | 12 | 16 |
Chen[ | 74 | 0 | 43 | 99 | 65 | 0 | 52 | 99 | 82 | 0 | 35 | 99 |
Yu[ | 10 | 0 | 13 | 14 | 8 | 0 | 15 | 14 | 12 | 0 | 11 | 14 |
Shi[ | 23 | 1 | 25 | 61 | 22 | 1 | 26 | 61 | 27 | 2 | 21 | 60 |
马海畅[ | 10 | 0 | 6 | 7 | 3 | 0 | 13 | 7 | 11 | 0 | 5 | 7 |
Liu[ | 118 | 0 | 93 | 111 | 130 | 0 | 81 | 111 | 147 | 0 | 64 | 111 |
Zhou[ | 20 | 1 | 25 | 59 | 19 | 0 | 26 | 60 | 27 | 1 | 18 | 59 |
Yan[ | 38 | 0 | 7 | 6 | 18 | 0 | 27 | 6 | / | / | / | / |
孙雯雯[ | 99 | 0 | 66 | 40 | 72 | 0 | 93 | 40 | / | / | / | / |
Xu[ | 67 | 0 | 4 | 23 | 61 | 0 | 10 | 23 | 69 | 0 | 2 | 23 |
第一作者 | 偏倚风险 | 适用性 | ||||||
---|---|---|---|---|---|---|---|---|
病例选择 | 待评价试验 | 参考标准 | 流程与进展 | 病例选择 | 待评价试验 | 参考标准 | ||
李倩[ | 低 | 不清楚 | 不清楚 | 低 | 低 | 低 | 低 | |
周晛[ | 低 | 不清楚 | 不清楚 | 低 | 低 | 低 | 低 | |
林爱清[ | 低 | 不清楚 | 不清楚 | 低 | 低 | 低 | 低 | |
Chen[ | 低 | 不清楚 | 高 | 低 | 低 | 低 | 高 | |
Yu[ | 不清楚 | 不清楚 | 不清楚 | 低 | 不清楚 | 低 | 低 | |
Shi[ | 低 | 不清楚 | 高 | 不清楚 | 低 | 低 | 高 | |
马海畅[ | 高 | 不清楚 | 不清楚 | 低 | 高 | 低 | 低 | |
Liu[ | 不清楚 | 不清楚 | 不清楚 | 不清楚 | 低 | 低 | 低 | |
Zhou[ | 低 | 不清楚 | 高 | 低 | 低 | 低 | 高 | |
Yan[ | 低 | 不清楚 | 高 | 低 | 低 | 低 | 高 | |
孙雯雯[ | 低 | 不清楚 | 不清楚 | 低 | 低 | 低 | 低 | |
Xu[ | 低 | 不清楚 | 不清楚 | 低 | 低 | 低 | 低 |
第一作者 | 敏感度(95%CI,%) | 特异度(95%CI,%) | 诊断比值比(95%CI) |
---|---|---|---|
李倩[ | |||
mNGS | 87.5(78.2~93.8) | 80.0(56.3~94.3) | 28.0(7.8~100.7) |
Xpert | 80.0(69.6~88.1) | 65.0(40.8~84.6) | 7.4(2.5~21.7) |
周晛[ | |||
mNGS | 50.0(24.7~75.3) | 100.0(78.2~100.0) | 31.0(1.6~605.6) |
Xpert | 37.5(15.2~64.6) | 100.0(78.2~100.0) | 19.2(1.0~378.3) |
mNGS+Xpert | 68.8(41.3~89.0) | 100.0(78.2~100.0) | 64.8(3.2~1293.9) |
林爱清[ | |||
mNGS | 58.8(40.7~75.4) | 100.0(79.4~100.0) | 46.7(2.6~841.8) |
Xpert | 38.2(22.2~56.4) | 100.0(79.4~100.0) | 20.7(1.1~374.6) |
mNGS+Xpert | 64.7(46.5~80.3) | 100.0(79.4~100.0) | 59.4(3.3~1076.5) |
Chen[ | |||
mNGS | 63.2(53.8~72.0) | 100.0(96.3~100.0) | 340.8(20.6~5626.0) |
Xpert | 55.6(46.1~64.7) | 100.0(96.3~100.0) | 248.3(15.1~4092.6) |
mNGS+Xpert | 70.1(60.9~78.2) | 100.0(96.3~100.0) | 462.5(27.9~7654.5) |
Yu[ | |||
mNGS | 43.5(23.2~65.5) | 100.0(76.8~100.0) | 22.6(1.2~423.4) |
Xpert | 34.8(16.4~57.3) | 100.0(76.8~100.0) | 15.9(0.8~301.0) |
mNGS+Xpert | 52.2(30.6~73.2) | 100.0(76.8~100.0) | 31.5(1.7~590.8) |
Shi[ | |||
mNGS | 47.9(33.3~62.8) | 98.4(91.3~100.0) | 56.1(7.2~438.3) |
Xpert | 45.8(31.4~60.8) | 98.4(91.3~100.0) | 51.6(6.6~403.3) |
mNGS+Xpert | 56.2(41.2~70.5) | 96.8(88.8~99.6) | 38.6(8.4~176.3) |
马海畅[ | |||
mNGS | 62.5(35.4~84.8) | 100.0(59.0~100.0) | 24.2(1.2~499.1) |
Xpert | 18.8(4.0~45.6) | 100.0(59.0~100.0) | 3.9(0.2~85.9) |
mNGS+Xpert | 68.8(41.3~89.0) | 100.0(59.0~100.0) | 31.4(1.5~654.2) |
第一作者 | 敏感度(95%CI,%) | 特异度(95%CI,%) | 诊断比值比(95%CI) |
Liu[ | |||
mNGS | 55.9(48.9~62.7) | 100.0(96.7~100.0) | 282.6(17.3~4607.0) |
Xpert | 61.6(54.7~68.2) | 100.0(96.7~100.0) | 357.1(21.9~5823.8) |
mNGS+Xpert | 69.7(63.0~75.8) | 100.0(96.7~100.0) | 510.0(31.2~8330.8) |
Zhou[ | |||
mNGS | 44.4(29.6~60.0) | 98.3(91.1~100.0) | 47.2(6.0~371.1) |
Xpert | 42.2(27.7~57.8) | 100.0(94.0~100.0) | 89.0(5.2~1530.1) |
mNGS+Xpert | 60.0(44.3~74.3) | 98.3(91.1~100.0) | 88.5(11.2~697.5) |
Yan[ | |||
mNGS | 84.4(70.5~93.5) | 100.0(54.1~100.0) | 66.7(3.4~1315.0) |
Xpert | 40.0(25.7~55.7) | 100.0(54.1~100.0) | 8.7(0.5~164.8) |
孙雯雯[ | |||
mNGS | 60.0(52.1~67.5) | 100.0(91.2~100.0) | 121.2(7.3~2005.2) |
Xpert | 43.6(35.9~51.6) | 100.0(91.2~100.0) | 62.8(3.8~1038.7) |
Xu[ | |||
mNGS | 94.4(86.2~98.4) | 100.0(85.2~100.0) | 705.0(36.6~13594.4) |
Xpert | 85.9(75.6~93.0) | 100.0(85.2~100.0) | 275.3(15.5~4887.3) |
mNGS+Xpert | 97.2(90.2~99.7) | 100.0(85.2~100.0) | 1306.6(60.5~28207.8) |
检测方法 | 研究数量 (篇) | 样本量 (份) | TP值 (份) | FP值 (份) | TN值 (份) | FN值 (份) | 合并敏感度 (95%CI,%) | 合并特异度 (95%CI,%) |
---|---|---|---|---|---|---|---|---|
肺泡灌洗液 | ||||||||
mNGS | 3[ | 526 | 208 | 1 | 122 | 195 | 64.3(42.8~96.5) | 99.8(98.7~100.0) |
Xpert | 3[ | 526 | 213 | 1 | 117 | 195 | 63.8(45.2~90.0) | 99.8(98.7~100.0) |
mNGS+Xpert | 3[ | 526 | 243 | 2 | 87 | 194 | 73.7(54.2~100.0) | 99.6(98.1~100.0) |
脑脊液 | ||||||||
mNGS | 5[ | 377 | 152 | 0 | 83 | 142 | 64.6(53.0~78.8) | 100.0(98.7~100.0) |
Xpert | 5[ | 377 | 107 | 0 | 128 | 142 | 41.8(32.1~54.5) | 100.0(98.7~100.0) |
mNGS+Xpert | 4[ | 326 | 127 | 0 | 63 | 136 | 67.8(61.5~74.8) | 100.0(98.6~100.0) |
其他肺外或多部位标本a | ||||||||
mNGS | 4[ | 441 | 197 | 5 | 109 | 130 | 60.8(44.6~82.9) | 98.9(96.7~100.0) |
Xpert | 4[ | 441 | 161 | 7 | 145 | 128 | 50.8(35.3~73.0) | 99.9(98.0~100.0) |
mNGS+Xpert | 2[ | 136 | 38 | 1 | 23 | 74 | 62.9(51.8~76.3) | 98.5(95.5~100.0) |
[1] | World Health Organization. Global tuberculosis report 2021. Geneva: World Health Organization, 2021. |
[2] | World Health Organization. Automated Real-time Nucleic Acid Amplification Technology for Rapid and Simultaneous Detection of Tuberculosis and Rifampicin Resistance: Xpert MTB/RIF System. Geneva:World Health Organization, 2011. |
[3] | 陈祺裕, 许予馨, 周厚清. 宏基因组二代测序用于临床感染性疾病诊断价值的Meta 分析. 中国卫生检验杂志, 2021, 31(18):2246-2250. |
[4] |
Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med, 2011, 155(8):529-536. doi:10.7326/0003-4819-155-8-201110180-00009.
doi: 10.7326/0003-4819-155-8-201110180-00009 pmid: 22007046 |
[5] | 李倩, 邓彬彬, 高朋健, 等. mNGS在结核性胸膜炎诊断和耐药性评估中应用价值. 湖南师范大学学报(医学版), 2021, 18(5):87-92. |
[6] |
周晛, 艾静文, 崔鹏, 等. 二代测序技术对活动性结核病患者的诊断价值. 中国防痨杂志, 2018, 40(2):153-156. doi:10.3969/j.issn.1000-6621.2018.02.008.
doi: 10.3969/j.issn.1000-6621.2018.02.008 |
[7] |
林爱清, 张璐, 成宝涛, 等. 二代测序技术应用于脑脊液检测在结核性脑膜炎中的早期诊断价值. 中华实验和临床感染病杂志·电子版, 2020, 14(4):291-295. doi:10.3877/cma.j.issn.1674-1358.2020.04.005.
doi: 10.3877/cma.j.issn.1674-1358.2020.04.005 |
[8] |
Chen Y, Wang Y, Liu X, et al. Comparative diagnostic utility of metagenomic next-generation sequencing, GeneXpert, modi-fied Ziehl-Neelsen staining, and culture using cerebrospinal fluid for tuberculous meningitis: A multi-center, retrospective study in China. J Clin Lab Anal, 2022, 36(4):e24307. doi:10.1002/jcla.24307.
doi: 10.1002/jcla.24307 |
[9] |
Yu G, Wang X, Zhu P, et al. Comparison of the efficacy of metagenomic next-generation sequencing and Xpert MTB/RIF in the diagnosis of tuberculous meningitis. J Microbiol Methods, 2021, 180:106124. doi:10.1016/j.mimet.2020.106124.
doi: 10.1016/j.mimet.2020.106124 |
[10] |
Shi CL, Han P, Tang PJ, et al. Clinical metagenomic sequencing for diagnosis of pulmonary tuberculosis. J Infect, 2020, 81(4):567-574. doi:10.1016/j.jinf.2020.08.004.
doi: 10.1016/j.jinf.2020.08.004 URL |
[11] | 马海畅. 评价脑脊液宏基因组二代测序在结核性脑膜炎早期诊断中的价值. 郑州:河南大学, 2020. |
[12] |
Liu X, Chen Y, Ouyang H, et al. Tuberculosis Diagnosis by Metagenomic Next-generation Sequencing on Bronchoalveolar Lavage Fluid: a cross-sectional analysis. Int J Infect Dis, 2021, 104:50-57. doi:10.1016/j.ijid.2020.12.063.
doi: 10.1016/j.ijid.2020.12.063 URL |
[13] |
Zhou X, Wu H, Ruan Q, et al. Clinical Evaluation of Diagnosis Efficacy of Active Mycobacterium tuberculosis Complex Infection via Metagenomic Next-Generation Sequencing of Direct Clinical Samples. Front Cell Infect Microbiol, 2019, 9:351. doi:10.3389/fcimb.2019.00351.
doi: 10.3389/fcimb.2019.00351 URL |
[14] |
Yan L, Sun W, Lu Z, et al. Metagenomic Next-Generation Sequencing (mNGS) in cerebrospinal fluid for rapid diagnosis of Tuberculosis meningitis in HIV-negative population. Int J Infect Dis, 2020, 96:270-275. doi:10.1016/j.ijid.2020.04.048.
doi: S1201-9712(20)30264-2 pmid: 32339718 |
[15] |
孙雯雯, 顾瑾, 顾范琳瑾. 宏基因组二代测序对不同类型结核病的诊断价值. 中华结核和呼吸杂志, 2021, 44(2):96-100. doi:10.3760/cma.j.cn112147-20200316-00343.
doi: 10.3760/cma.j.cn112147-20200316 |
[16] |
Xu P, Yang K, Yang L, et al. Next-Generation Metagenome Sequencing Shows Superior Diagnostic Performance in Acid-Fast Staining Sputum Smear-Negative Pulmonary Tuberculosis and Non-tuberculous Mycobacterial Pulmonary Disease. Front Microbiol, 2022, 13:898195. doi:10.3389/fmicb.2022.898195.
doi: 10.3389/fmicb.2022.898195 |
[17] |
Li S, Liu B, Peng M, et al. Diagnostic accuracy of Xpert MTB/RIF for tuberculosis detection in different regions with different endemic burden: A systematic review and meta-analysis. PLoS One, 2017, 12(7):e180725. doi:10.1371/journal.pone.0180725.
doi: 10.1371/journal.pone.0180725 |
[18] |
Rufai SB, Singh A, Singh J, et al. Diagnostic usefulness of Xpert MTB/RIF assay for detection of tuberculous meningitis using cerebrospinal fluid. J Infect, 2017, 75(2):125-131. doi:10.1016/j.jinf.2017.04.010.
doi: S0163-4453(17)30130-5 pmid: 28501491 |
[19] |
Jin W, Pan J, Miao Q, et al. Diagnostic accuracy of metagenomic next-generation sequencing for active tuberculosis in clinical practice at a tertiary general hospital. Ann Transl Med, 2020, 8(17):1065. doi:10.21037/atm-20-2274.
doi: 10.21037/atm-20-2274 pmid: 33145284 |
[20] |
Wang S, Chen Y, Wang D, et al. The Feasibility of Meta-genomic Next-Generation Sequencing to Identify Pathogens Causing Tuberculous Meningitis in Cerebrospinal Fluid. Front Microbiol, 2019, 10:1993. doi:10.3389/fmicb.2019.01993.
doi: 10.3389/fmicb.2019.01993 URL |
[21] |
Sohn H, Aero AD, Menzies D, et al. Xpert MTB/RIF testing in a low tuberculosis incidence, high-resource setting: limitations in accuracy and clinical impact. Clin Infect Dis, 2014, 58(7):970-976. doi:10.1093/cid/ciu022.
doi: 10.1093/cid/ciu022 pmid: 24429440 |
[22] |
Nicol MP, Workman L, Isaacs W, et al. Accuracy of the Xpert MTB/RIF test for the diagnosis of pulmonary tuberculosis in children admitted to hospital in Cape Town, South Africa: a descriptive study. Lancet Infect Dis, 2011, 11(11):819-824. doi:10.1016/S1473-3099(11)70167-0.
doi: 10.1016/S1473-3099(11)70167-0 pmid: 21764384 |
[23] |
Simner PJ, Miller S, Carroll KC. Understanding the Promises and Hurdles of Metagenomic Next-Generation Sequencing as a Diagnostic Tool for Infectious Diseases. Clin Infect Dis, 2018, 66(5):778-788. doi:10.1093/cid/cix881.
doi: 10.1093/cid/cix881 pmid: 29040428 |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||