Chinese Journal of Antituberculosis ›› 2022, Vol. 44 ›› Issue (10): 1022-1027.doi: 10.19982/j.issn.1000-6621.20220167
• Original Article • Previous Articles Next Articles
Nie Wenjuan1, Shi Wenhui1, Liu Peiying2, Yang Yang1, Wang Jun1, Wang Qingfeng1, Chu Naihui1()
Received:
2022-05-08
Online:
2022-10-10
Published:
2022-09-30
Contact:
Chu Naihui
E-mail:dongchu1994@sina.com
Supported by:
CLC Number:
Nie Wenjuan, Shi Wenhui, Liu Peiying, Yang Yang, Wang Jun, Wang Qingfeng, Chu Naihui. Serum cytokine TNF-α, IL-4, sIL-2R and IFN-γ progress in monitoring bacterial load and anti-tuberculosis treatment[J]. Chinese Journal of Antituberculosis, 2022, 44(10): 1022-1027. doi: 10.19982/j.issn.1000-6621.20220167
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20220167
[1] |
Takahashi S, Setoguchi Y, Nukiwa T, et al. interleukin-2 receptor in sear of patients with pulmonary TB. Chest, 1991, 99(2):310-314. doi: 10.1378/chest.99.2.310.
doi: 10.1378/chest.99.2.310 pmid: 1989787 |
[2] |
Rajalingam R, Mehra NK, Pande JN, et al. Correlation of serum interleukin-2 receptor alpha levels with clinical manifestations in pulmonary TB. Tuber Lung Dis, 1996, 77(4):374-379. doi: 10.1016/s0962-8479(96)90105-7.
doi: 10.1016/s0962-8479(96)90105-7 URL |
[3] |
Harari A, Rozot V, Bellutti Enders F, et al. Dominant TNF-alpha+ Mycobacterium tuberculosis-specific CD4+ T cell responses discriminate between latent infection and active disease. Nat Med, 2011, 17(3):372-376. doi: 10.1038/nm.2299.
doi: 10.1038/nm.2299 URL |
[4] |
Kumar NP, Moideen K, Banurekha VV, et al. Plasma Proinflammatory Cytokines Are Markers of Disease Severity and Bacterial Burden in Pulmonary Tuberculosis. Open Forum Infect Dis, 2019, 6(7):ofz257. doi: 10.1093/ofid/ofz257.
doi: 10.1093/ofid/ofz257 URL |
[5] |
Bai R, Tao L, Li B, et al. Using cytometric bead arrays to detect cytokines in the serum of patients with different types of pulmonary tuberculosis. Int J Immunopathol Pharmacol, 2019, 33(12):2058738419845176. doi: 10.1177/20587384198 45176.
doi: 10.1177/20587384198 45176 |
[6] | Zhong D, Dong L, Liang Q. Alteration of interferon-gamma and interleukin-12 released by bronchoalveolar lavage cells from pulmonary tuberculosis. Zhonghua Jie He He Hu Xi Za Zhi, 2000, 23(9):552-555. |
[7] |
Tsenova L, Bergtold A, Freedman VH, et al. Tumor necrosis factor alpha is a determinant of pathogenesis and disease progression in mycobacterial infection in the central nervous system. Proc Natl Acad Sci U S A, 1999, 96(10):5657-5662. doi: 10.1073/pnas.96.10.5657.
doi: 10.1073/pnas.96.10.5657 pmid: 10318940 |
[8] |
Tobin DM, Vary JC Jr, Ray JP, et al. The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell, 2010, 140(5):717-730. doi: 10.1016/j.cell.2010.02.013.
doi: 10.1016/j.cell.2010.02.013 pmid: 20211140 |
[9] |
Tsenova L, Sokol K, Freedman VH, et al. A combination of thalidomide plus antibiotics protects rabbits from mycobacterial meningitis-associated death. J Infect Dis, 1998, 177(6):1563-1572. doi: 10.1086/515327.
doi: 10.1086/515327 pmid: 9607834 |
[10] |
Hong JY, Lee HJ, Kim SY, et al. Efficacy of IP-10 as a biomarker for monitoring tuberculosis treatment. J Infect, 2013, 68(3):252-258. doi: 10.1016/j.jinf.2013.09.033.
doi: 10.1016/j.jinf.2013.09.033 URL |
[11] |
Adetifa IM, Ota MO, Jeffries DJ, et al. Interferon-γ ELISPOT as a biomarker of treatment efficacy in latent tuberculosis infection: a clinical trial. Am J Respir Crit Care Med, 2012, 187(4):439-445. doi: 10.1164/rccm.201208-1352OC.
doi: 10.1164/rccm.201208-1352OC URL |
[12] |
Azzurri A, Sow OY, Amedei A, et al. IFN-gamma-inducible protein 10 and pentraxin 3 plasma levels are tools for monitoring inflammation and disease activity in Mycobacterium tuberculosis infection. Microbes Infect, 2005, 7(1):1-8. doi: 10.1016/j.micinf.2004.09.004.
doi: 10.1016/j.micinf.2004.09.004 URL |
[13] | Sharma S, Bose M. Role of cytokines in immune response to pulmonary tuberculosis. Asian Pac J Allergy Immunol, 2001, 19(3):213-219. |
[14] |
Van Crevel R, Karyadi E, Preyers F, et al. Increased production of interleukin 4 by CD4+ and CD8+ T cells from patients with tuberculosis is related to the presence of pulmonary cavities. J Infect Dis, 2000, 181(3):1194-1197. doi: 10.1086/315325.
doi: 10.1086/315325 pmid: 10720554 |
[15] |
Lai CK, Ho S, Chan CH, et al. Cytokine gene expression profile of circulating CD4+ T cells in active pulmonary tuberculosis. Chest, 1997, 111(3):606-611. doi: 10.1378/chest.111.3.606.
doi: 10.1378/chest.111.3.606 pmid: 9118695 |
[16] |
Ameglio F, Casarini M, Capoluongo E, et al. Post-treatment changes of six cytokines in active pulmonary tuberculosis: differences between patients with stable or increased fibrosis. Int J Tuberc Lung Dis, 2005, 9(1):98-104.
pmid: 15675558 |
[17] |
Bai XJ, Li HM, Yang YR, et al. Cytokine and soluble adhesion molecule profiles and biomarkers for treatment monitoring in Re-treated smear-positive patients with pulmonary tuberculosis. Cytokine, 2018, 108(8):9-16. doi: 10.1016/j.cyto.2018.03.009.
doi: 10.1016/j.cyto.2018.03.009 URL |
[18] |
Smith KA. Interleukin-2: inception, impact, and implications. Science, 1988, 240(4856): 1169-1176. doi: 10.1126/science.3131876.
doi: 10.1126/science.3131876 pmid: 3131876 |
[19] |
Pathan AA, Wilkinson KA, Klenerman P, et al. Direct ex vivo analysis of antigen-specific IFN-gamma-secreting CD 4 T cells in Mycobacterium tuberculosis-infected individuals: associations with clinical disease state and effect of treatment. J Immunol, 2001, 167(9): 5217-5225. doi: 10.4049/jimmunol.167.9.5217.
doi: 10.4049/jimmunol.167.9.5217 pmid: 11673535 |
[20] |
Carrara S, Vincenti D, Petrosillo N, et al. Use of a T cell-based assay for monitoring efficacy of antituberculosis therapy. Clin Infect Dis, 2004, 38(5):754-756. doi: 10.1086/381754.
doi: 10.1086/381754 pmid: 14986262 |
[21] |
Katiyar SK, Sampath A, Bihari S, et al. Use of the Quanti-FERON-TB Gold In-Tube test to monitor treatment efficacy in active pulmonary tuberculosis. Int J Tuberc Lung Dis, 2008, 12(10): 1146-1152.
pmid: 18812044 |
[22] |
Pai M, Joshi R, Bandyopadhyay M, et al. Sensitivity of a whole-blood interferon-gamma assay among patients with pulmonary tuberculosis and variations in T-cell responses during anti-tuberculosis treatment. Infection, 2007, 35(2):98-103.
pmid: 17401714 |
[23] |
Dominguez J, De Souza-Galvao M, Ruiz-Manzano J, et al. T-cell responses to the Mycobacterium tuberculosis-specific antigens in active tuberculosis patients at the beginning, during, and after antituberculosis treatment. Diagn Microbiol Infect Dis, 2009, 63(1):43-51. doi: 10.1016/j.diagmicrobio.2008.09.010.
doi: 10.1016/j.diagmicrobio.2008.09.010 URL |
[24] |
Kobashi Y, Mouri K, Yagi S, et al. Transitional changes in T-cell responses to Mycobacterium tuberculosis-specific antigens during treatment. J Infect, 2009, 58(3):197-204. doi: 10.1016/j.jinf.2008.08.009.
doi: 10.1016/j.jinf.2008.08.009 URL |
[25] |
Sahiratmadja E, Alisjahbana B, De BT, et al. Dynamic changes in pro- and anti-inflammatory cytokine profiles and gamma interferon receptor signaling integrity correlate with tuberculosis disease activity and response to curative treatment. Infect Immun, 2007, 75 (2):820-829. doi: 10.1128/IAI.00602-06.
doi: 10.1128/IAI.00602-06 pmid: 17145950 |
[26] |
Oliveira de LR, Peresi E, Golim MA, et al. Analysis of toll-like receptors, iNOS and cytokine profiles in patients with pulmonary tuberculosis during anti-tuberculosis treatment. PLoS One, 2014, 9(2):e88572. doi: 10.1371/journal.pone.0088572.
doi: 10.1371/journal.pone.0088572 URL |
[27] |
Deveci F, Akbulut HH, Turgut T, et al. Changes in serum cytokine levels in active tuberculosis with treatment. Med Inflamm, 2005(5): 256-262. doi: 10.1155/MI.2005.256.
doi: 10.1155/MI.2005.256 |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||