Chinese Journal of Antituberculosis ›› 2022, Vol. 44 ›› Issue (1): 91-94.doi: 10.19982/j.issn.1000-6621.20210537
• Review Articles • Previous Articles Next Articles
Received:
2021-09-09
Online:
2022-01-10
Published:
2021-12-29
Contact:
HOU Dai-lun
E-mail:hou.dl@mail.ccmu.edu.cn
Supported by:
CLC Number:
WU Jian, HOU Dai-lun. Application of deep learning in pulmonary tuberculosis imaging diagnosis[J]. Chinese Journal of Antituberculosis, 2022, 44(1): 91-94. doi: 10.19982/j.issn.1000-6621.20210537
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20210537
[1] |
周新华. 从建立影像分析思路入手把握结核病影像诊断与鉴别要点. 中国防痨杂志, 2020, 42(3):191-194. doi: 10.3969/j.issn.1000-6621.2020.03.002.
doi: 10.3969/j.issn.1000-6621.2020.03.002 |
[2] |
金征宇. 人工智能医学影像应用:现实与挑战. 放射学实践, 2018, 33(10):989-991. doi: 10.13609/j.cnki.1000-0313.2018.10.001.
doi: 10.13609/j.cnki.1000-0313.2018.10.001 |
[3] |
Singh R, Kalra MK, Nitiwarangkul C, et al. Deep learning in chest radiography: Detection of findings and presence of change. PLoS One, 2018, 13(10):e0204155. doi: 10.1371/journal.pone.0204155.
doi: 10.1371/journal.pone.0204155 |
[4] |
Mohan CSM. Artificial intelligence in radiology—Are we treating the image or the patient? Indian J Radiol Imaging, 2018, 28(2):137-139. doi: 10.4103/ijri.IJRI_256_18.
doi: 10.4103/ijri.IJRI_256_18 URL |
[5] |
Marton F, Säljö R. On qualitative differences in learning: Ⅰ—outcome and process. Br J Educ Psychol, 1976, 46(1):4-11. doi: 10.1111/j.2044-8279.1976.tb02980.x.
doi: 10.1111/j.2044-8279.1976.tb02980.x URL |
[6] |
Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11):2278-2324. doi: 10.1109/5.726791.
doi: 10.1109/5.726791 |
[7] |
Zhang D, Wang J, Noble JH, et al. HeadLocNet: Deep convolutional neural networks for accurate classification and multi-landmark localization of head CTs. Med Image Anal, 2020, 61:101659. doi: 10.1016/j.media.2020.101659.
doi: 10.1016/j.media.2020.101659 |
[8] |
Wang H, Song Z, Li W, et al. A Hybrid Network for Large-Scale Action Recognition from RGB and Depth Modalities. Sensors (Basel), 2020, 20(11):3305. doi: 10.3390/s20113305.
doi: 10.3390/s20113305 URL |
[9] |
Lee H, Kwon H. Going deeper with contextual CNN for hyperspectral image classification. IEEE Trans Image Process, 2017, 26(10):4843-4855. doi: 10.1109/TIP.2017.2725580.
doi: 10.1109/TIP.2017.2725580 URL |
[10] |
Shin M, Paik W, Kim B, et al. An IoT Platform with Monitoring Robot Applying CNN-Based Context-Aware Learning. Sensors (Basel), 2019, 19(11):2525. doi: 10.3390/s19112525.
doi: 10.3390/s19112525 URL |
[11] |
Cossu A, Carta A, Lomonaco V, et al. Continual learning for recurrent neural networks: An empirical evaluation. Neural Netw, 2021, 143:607-627. doi: 10.1016/j.neunet.2021.07.021.
doi: 10.1016/j.neunet.2021.07.021 URL |
[12] |
Nahid AA, Mehrabi MA, Kong Y. Histopathological Breast Cancer Image Classification by Deep Neural Network Techniques Guided by Local Clustering. Biomed Res Int, 2018, 2018:2362018. doi: 10.1155/2018/2362108.
doi: 10.1155/2018/2362108 |
[13] |
Norman B, Pedoia V, Majumdar S. Use of 2D U-Net Convolutional Neural Networks for Automated Cartilage and Meniscus Segmentation of Knee MR Imaging Data to Determine Relaxometry and Morphometry. Radiology, 2018, 288(1):177-185. doi: 10.1148/radiol.2018172322.
doi: 10.1148/radiol.2018172322 pmid: 29584598 |
[14] |
Sahiner B, Pezeshk A, Hadjiiski LM, et al. Deep learning in medical imaging and radiation therapy. Med Phys, 2019, 46(1):e1-e36. doi: 10.1002/mp.13264.
doi: 10.1002/mp.13264 URL |
[15] |
刘凯, 张荣国, 涂文婷, 等. 深度学习技术对胸部X线平片亚实性结节的检测效能初探. 中华放射学杂志, 2017, 51(12):918-921. doi: 10.3760/cma.j.issn.1005-1201.2017.12.006.
doi: 10.3760/cma.j.issn.1005-1201.2017.12.006 |
[16] |
Kooi T, van Ginneken BV, Karssemeijer N, et al. Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network. Med Phys, 2017, 44(3):1017-1027. doi: 10.1002/mp.12110.
doi: 10.1002/mp.12110 URL |
[17] |
Li Y, Zhang Z, Dai C, et al. Accuracy of deep learning for automated detection of pneumonia using chest X-Ray images: A systematic review and meta-analysis. Comput Biol Med, 2020, 123:103898. doi: 10.1016/j.compbiomed.2020.103898.
doi: 10.1016/j.compbiomed.2020.103898 |
[18] |
Ciompi F, de Hoop B, van Riel SJ, et al. Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box. Med Image Anal, 2015, 26(1):195-202. doi: 10.1016/j.media.2015.08.001.
doi: 10.1016/j.media.2015.08.001 URL |
[19] |
Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med, 2018, 24(10):1559-1567. doi: 10.1038/s41591-018-0177-5.
doi: 10.1038/s41591-018-0177-5 URL |
[20] |
Avanzo M, Stancanello J, Pirrone G, et al. Radiomics and deep learning in lung cancer. Strahlenther Onkol, 2020, 196(10):879-887. doi: 10.1007/s00066-020-01625-9.
doi: 10.1007/s00066-020-01625-9 URL |
[21] |
El-Khatib H, Popescu D, Ichim L. Deep Learning-Based Methods for Automatic Diagnosis of Skin Lesions. Sensors (Basel), 2020, 20(6):1753. doi: 10.3390/s20061753.
doi: 10.3390/s20061753 URL |
[22] |
Alemi Koohbanani N, Jahanifar M, Zamani Tajadin N, et al. NuClick: A deep learning framework for interactive segmentation of microscopic images. Med Image Anal, 2020, 65:101771. doi: 10.1016/j.media.2020.101771.
doi: 10.1016/j.media.2020.101771 |
[23] |
Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, et al. Artificial intelligence in retina. Prog Retin Eye Res, 2018, 67:1-29. doi: 10.1016/j.preteyeres.2018.07.004.
doi: S1350-9462(18)30011-9 pmid: 30076935 |
[24] |
Shin HC, Roth HR, Gao M, et al. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Trans Med Imaging, 2016, 35(5):1285-1298. doi: 10.1109/TMI.2016.2528162.
doi: 10.1109/TMI.2016.2528162 URL |
[25] |
Maduskar P, Muyoyeta M, Ayles H, et al. Detection of tuberculosis using digital chest radiography: automated reading vs. interpretation by clinical officers. Int J Tuberc Lung Dis, 2013, 17(12):1613-1620. doi: 10.5588/ijtld.13.0325.
doi: 10.5588/ijtld.13.0325 pmid: 24200278 |
[26] |
Murphy K, Habib SS, Zaidi SMA, et al. Computer aided detection of tuberculosis on chest radiographs: An evaluation of the CAD4TB v6 system. Sci Rep, 2020, 10(1):5492. doi: 10.1038/s41598-020-62148-y.
doi: 10.1038/s41598-020-62148-y URL |
[27] |
Koesoemadinata RC, Kranzer K, Livia R, et al. Computer-assisted chest radiography reading for tuberculosis screening in people living with diabetes mellitus. Int J Tuberc Lung Dis, 2018, 22(9):1088-1094. doi: 10.5588/ijtld.17.0827.
doi: 10.5588/ijtld.17.0827 pmid: 30092877 |
[28] |
Lakhani P, Sundaram B. Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology, 2017, 284(2):574-582. doi: 10.1148/radiol.2017162326.
doi: 10.1148/radiol.2017162326 pmid: 28436741 |
[29] |
Hwang EJ, Park S, Jin KN, et al. Development and Validation of a Deep Learning-based Automatic Detection Algorithm for Active Pulmonary Tuberculosis on Chest Radiographs. Clin Infect Dis, 2019, 69(5):739-747. doi: 10.1093/cid/ciy967.
doi: 10.1093/cid/ciy967 pmid: 30418527 |
[30] |
曹盼, 王斐, 刘哲, 等. 特征金字塔网络在胸部X线摄影图像上筛检肺结核的价值. 中国防痨杂志, 2019, 41(3):288-293. doi: 10.3969/j.issn.1000-6621.2019.03.009.
doi: 10.3969/j.issn.1000-6621.2019.03.009 |
[31] |
Khan FA, Majidulla A, Tavaziva G, et al. Chest x-ray analysis with deep learning-based software as a triage test for pulmonary tuberculosis: a prospective study of diagnostic accuracy for culture-confirmed disease. Lancet Digit Health, 2020, 2(11):e573-e581. doi: 10.1016/S2589-7500(20)30221-1.
doi: 10.1016/S2589-7500(20)30221-1 |
[32] |
Huang X, Lei Q, Xie T, et al. Deep Transfer Convolutional Neural Network and Extreme Learning Machine for Lung Nodule Diagnosis on CT images. Knowledge-Based Systems, 2020, 204:106230. doi: 10.1016/j.knosys.2020.106230.
doi: 10.1016/j.knosys.2020.106230 |
[33] |
Ma L, Wang Y, Guo L, et al. Developing and verifying automatic detection of active pulmonary tuberculosis from multi-slice spiral CT images based on deep learning. J Xray Sci Technol, 2020, 28(5):939-951. doi: 10.3233/XST-200662.
doi: 10.3233/XST-200662 |
[34] |
吴树才, 王新举, 纪俊雨, 等. 基于深度学习卷积神经网络的肺结核CT诊断模型效能初探. 中华结核和呼吸杂志, 2021, 44(5):450-455. doi: 10.3760/cma.j.cn112147-20210108-00026.
doi: 10.3760/cma.j.cn112147-20210108-00026 |
[35] |
Wang L, Ding W, Mo Y, et al. Distinguishing nontuberculous mycobacteria from Mycobacterium tuberculosis lung disease from CT images using a deep learning framework. Eur J Nucl Med Mol Imag, 2021, 16:1-14. doi: 10.1007/s00259-021-05432-x.
doi: 10.1007/s00259-021-05432-x |
[36] |
Bera K, Schalper KA, Rimm DL, et al. Artificial intelligence in digital pathology—new tools for diagnosis and precision oncology. Nat Rev Clin Oncol, 2019, 16(11):703-715. doi: 10.1038/s41571-019-0252-y.
doi: 10.1038/s41571-019-0252-y URL |
[37] |
Loh BCS, Then PHH. Deep learning for cardiac computer-aided diagnosis: benefits, issues & solutions. Mhealth, 2017, 3:45. doi: 10.21037/mhealth.2017.09.01.
doi: 10.21037/mhealth.2017.09.01 URL |
[1] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[2] | Senior Department of Tuberculosis, the 8th Medical Center of Chinese PLA General Hospital , Editorial Board of Chinese Journal of Antituberculosis , Basic and Clinical Speciality Committees of Tuberculosis Control Branch of China International Exchange , Promotive Association for Medical and Health Care . Expert consensus on multidisciplinary diagnosis and treatment of tuberculous peritonitis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 243-257. |
[3] | Duan Hongfei, Tao Yong. Interpretation of social organization standard of Diagnosis Specification of Intraocular Tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 258-261. |
[4] | Zhang Peize, Gao Qian, Deng Guofang. [18F]FDT-PET-CT technology that may bring revolutionary changes to tuberculosis clinical research [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 262-265. |
[5] | Jia Hui, Jing Hui, Ling Xiaojie, Wang Yan, Li Xuezheng. The diagnostic value of GeneXpert MTB/RIF Ultra in detecting sputum samples for newly diagnosed pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 298-304. |
[6] | Shi Yuru, Gu Dejian, Wu Jing, Liu Ting, Qin Linghan, Yue Li, Qi Yingjie. Diagnostic value of probe capture-based targeted next-generation sequencing and metagenomic next-generation sequencing for detecting Mycobacterium tuberculosis in bronchoalveolar lavage fluid [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 305-311. |
[7] | Yang Ziyi, Chen Suting. Research progress on bedaquiline resistance and drug resistance diagnosis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 374-379. |
[8] | Qiu Yong, Quan Zhuo, Qu Rong, Tian Fajun, Li Meng, Wang Gengsheng, Wang Ya, Guo Mingcheng, Gao Qian. Evaluation of different tuberculosis diagnostic tools for detecting patients in a primary-level clinic in rural China: a real-world retrospective study [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 181-188. |
[9] | You Chengdong, Zhu Ling, Li Peibo. Research progress on serum trace elements in the development and nutritional support of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 218-223. |
[10] | Fu Ying, Xiong Yangyang, Fang Si, Li Chuanxiang, Guo Hongrong. The research progress on the relationship between serum albumin and its derivative biomarkers and chronic obstructive pulmonary disease [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 231-236. |
[11] | Zhao Yue, Wang Haoran, Cheng Meijin, Wang Wei, Liang Ruixia, Huang Hairong. The evaluation of the smear-positive and Xpert-negative outcome as an early indicator of nontuberculous mycobacteria existence in clinical specimen [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 61-65. |
[12] | Wang Xiaomin, Chen Jinyun, Zeng Yuqin, Ma Quan, Kong Xingxing, Meng Jianzhou, Lu Shuihua. Interpretation of the third edition of WHO consolidated guidelines on tuberculosis: module 3: diagnosis: rapid diagnostics for tuberculosis detection [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1006-1022. |
[13] | Mei Chunlin, Yang Chengqing, Du Ronghui, Cao Tanze, Feng Wei, Chen Shufang, Liu Xiuping, Ou Jiali. Diagnostic accuracy of GeneXpert MTB/RIF in detecting pulmonary tuberculosis with extremely low loads of MTB in bronchoalveolar lavage fluid in general hospitals [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1037-1041. |
[14] | Zhong Lingshan, Wang Li, Zhang Shuo, Li Nan, Yang Qingyuan, Ding Wenlong, Chen Xingzhi, Huang Chencui, Xing Zhiheng. A machine learning model based on CT images combined with radiomics and semantic features for diagnosis of nontuberculous mycobacterium lung disease and pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1042-1049. |
[15] | Li Wenhan, Yang Jing, Li Chunhua. Research progress of artificial intelligence in pulmonary tuberculosis imaging diagnosis and drug resistance prediction [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1098-1103. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||