Chinese Journal of Antituberculosis ›› 2021, Vol. 43 ›› Issue (11): 1107-1112.doi: 10.3969/j.issn.1000-6621.2021.11.001
Special Issue: 标准、共识、指南
• Guideline∙Standard∙Consensus • Previous Articles Next Articles
Beijing Chest Hospital,Capital Medical University,Editorial Board of Chinese Journal of Antituberculosis
Received:
2021-08-04
Online:
2021-11-10
Published:
2021-11-02
Beijing Chest Hospital,Capital Medical University,Editorial Board of Chinese Journal of Antituberculosis . Expert consensus on polymorphism detection of N-acetyltransferase-2 encoding gene and appropriate isoniazid dosing for tuberculosis patients[J]. Chinese Journal of Antituberculosis, 2021, 43(11): 1107-1112. doi: 10.3969/j.issn.1000-6621.2021.11.001
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2021.11.001
基因型 | 代谢类型 |
---|---|
341T→C位点、590G→A位点、857G→A位点均为野生型 | 快代谢型 |
341T→C位点为杂合突变型 | 中间代谢型 |
590G→A位点为杂合突变型 | 中间代谢型 |
857G→A位点为杂合突变型 | 中间代谢型 |
341T→C位点和590G→A位点为杂合突变型 | 中间代谢型或慢代谢型 |
341T→C位点和857G→A位点为杂合突变型 | 中间代谢型或慢代谢型 |
590G→A位点和857G→A位点为杂合突变型 | 中间代谢型或慢代谢型 |
341T→C位点、590G→A位点、857G→A位点为杂合突变型 | 中间代谢型或慢代谢型 |
341T→C位点为纯合突变型,其他2个位点任意情况 | 慢代谢型 |
590G→A位点为纯合突变型,其他2个位点任意情况 | 慢代谢型 |
857G→A位点为纯合突变型,其他2个位点任意情况 | 慢代谢型 |
代谢类型 | 用药建议 |
---|---|
快代谢型 | 异烟肼在人体内代谢速度加快,血液中活性成分消除加快,建议可考虑使用1.5倍标准剂量的异烟肼治疗;也可综合患者的身体指标、病程情况,使用标准剂量的异烟肼,同步测定患者的异烟肼血药浓度,并根据具体情况进行调整 |
中间代谢型 | 建议使用标准剂量的异烟肼进行治疗;也可综合患者的身体指标、病程情况,使用标准剂量的异烟肼,同步测定患者的异烟肼血药浓度,并根据具体情况进行调整 |
慢代谢型 | NAT2基因突变导致异烟肼代谢减慢,异烟肼短期内在人体内积累,血药浓度高,杀菌效果好,但异烟肼高浓度积累会对肝脏造成损伤,建议考虑治疗时降低用量至0.5倍的标准剂量;也可综合患者的身体指标、病程情况,使用标准剂量的异烟肼,同步测定患者的异烟肼血药浓度,并根据具体情况进行调整 |
[1] | 中华人民共和国国家卫生和计划生育委员会. 国家卫生计生委医政医管局关于印发《药物代谢酶和药物作用靶点基因检测技术指南((试行)》和《肿瘤个体化治疗检测技术指南(试行)》的通知. 国卫医医护便函〔2015〕240号. 2015-07-29. |
[2] | 刘诚诚, 金海霞, 徐建, 等. 结核病患者N-乙酰基转移酶2基因型与异烟肼血药浓度关系的研究. 中国防痨杂志, 2013, 35(3):179-182. |
[3] |
Chen B, Cai W, Li J, et al. Estimating N-acetyltransferase metabolic activity and pharmacokinetic parameters of isoniazid from genotypes in Chinese subjects. Clin Chim Acta, 2009, 405(1/2):23-29. doi: 10.1016/j.cca.2009.03.045.
doi: 10.1016/j.cca.2009.03.045 |
[4] |
Huang YS. Recent progress in genetic variation and risk of antituberculosis drug-induced liver injury. J Chin Med Assoc, 2014, 77(4):169-173. doi: 10.1016/j.jcma.2014.01.010.
doi: 10.1016/j.jcma.2014.01.010 |
[5] |
Chen B, Li JH, Xu YM, et al. The influence of NAT2 genotypes on the plasma concentration of isoniazid and acetylisoniazid in Chinese pulmonary tuberculosis patients. Clin Chim Acta, 2006, 365(1/2):104-108. doi: 10.1016/j.cca.2005.08.012.
doi: 10.1016/j.cca.2005.08.012 |
[6] |
Chen B, Cao X, Li J. Gene dose effect of NAT2 variants on the pharmacokinetics of isoniazid and acetylisoniazid in healthy Chinese subjects. Drug Metabol Drug Interact, 2011, 26(3):113-118. doi: 10.1515/DMDI.2011.016.
doi: 10.1515/DMDI.2011.016 |
[7] |
Hong BL, D’Cunha R, Li P, et al. A Systematic Review and Meta-analysis of Isoniazid Pharmacokinetics in Healthy Volunteers and Patients with Tuberculosis. Clin Ther, 2020, 42(11):e220-e241. doi: 10.1016/j.clinthera.2020.09.009.
doi: 10.1016/j.clinthera.2020.09.009 |
[8] |
Jing W, Zong Z, Tang B, et al. Population Pharmacokinetic Analysis of Isoniazid among Pulmonary Tuberculosis Patients from China. Antimicrob Agents Chemother, 2020, 64(3):e01736-19. doi: 10.1128/AAC.01736-19.
doi: 10.1128/AAC.01736-19 |
[9] |
Fredj NB, Romdhane HB, Woillard JB, et al. Population pharmacokinetic model of isoniazid in patients with tuberculosis in Tunisia. Int J Infect Dis, 2021, 104:562-567. doi: 10.1016/j.ijid.2021.01.033.
doi: 10.1016/j.ijid.2021.01.033 |
[10] |
Donald PR, Sirgel FA, Venter A, et al. The influence of human N-acetyltransferase genotype on the early bactericidal activity of isoniazid. Clin Infect Dis, 2004, 39(10):1425-1430. doi: 10.1086/424999.
doi: 10.1086/424999 |
[11] |
Fukino K, Sasaki Y, Hirai S, et al. Effects of N-acetyltransferase 2 (NAT2), CYP2E1 and Glutathione-S-transferase (GST) genotypes on the serum concentrations of isoniazid and metabolites in tuberculosis patients. J Toxicol Sci, 2008, 33(2):187-195. doi: 10.2131/jts.33.187.
doi: 10.2131/jts.33.187 |
[12] | Ohno M, Yamaguchi I, Yamamoto I, et al. Slow N-acetyltransferase 2 genotype affects the incidence of isoniazid and rifampicin-induced hepatotoxicity. Int J Tuberc Lung Dis, 2000, 4(3):256-261. |
[13] |
Hiratsuka M, Kishikawa Y, Takekuma Y, et al. Genotyping of the N-acetyltransferase2 polymorphism in the prediction of adverse drug reactions to isoniazid in Japanese patients. Drug Metab Pharmacokinet, 2002, 17(4):357-362. doi: 10.2133/dmpk.17.357.
doi: 10.2133/dmpk.17.357 |
[14] |
Huang YS, Chern HD, Su WJ, et al. Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatitis. Hepatology, 2002, 35(4):883-889. doi: 10.1053/jhep.2002.32102.
doi: 10.1053/jhep.2002.32102 |
[15] |
Cai Y, Yi J, Zhou C, et al. Pharmacogenetic study of drug-metabolising enzyme polymorphisms on the risk of anti-tuberculosis drug-induced liver injury: a meta-analysis. PLoS One, 2012, 7(10):e47769. doi: 10.1371/journal.pone.0047769.
doi: 10.1371/journal.pone.0047769 |
[16] |
Du H, Chen X, Fang Y, et al. Slow N-acetyltransferase 2 genotype contributes to anti-tuberculosis drug-induced hepatotoxicity: a meta-analysis. Mol Biol Rep, 2013, 40(5):3591-3596. doi: 10.1007/s11033-012-2433-y.
doi: 10.1007/s11033-012-2433-y |
[17] |
Yuliwulandari R, Prayuni K, Susilowati RW, et al. NAT2 slow acetylator is associated with anti-tuberculosis drug-induced liver injury severity in indonesian population. Pharmacogenomics, 2019, 20(18):1303-1311. doi: 10.2217/pgs-2019-0131.
doi: 10.2217/pgs-2019-0131 |
[18] |
Zhang D, Hao J, Hou R, et al. The role of NAT2 polymorphism and methylation in anti-tuberculosis drug-induced liver injury in Mongolian tuberculosis patients. J Clin Pharm Ther, 2020, 45(3):561-569. doi: 10.1111/jcpt.13097.
doi: 10.1111/jcpt.13097 |
[19] |
Azuma J, Ohno M, Kubota R, et al. NAT2 genotype guided regimen reduces isoniazid-induced liver injury and early treatment failure in the 6-month four-drug standard treatment of tuberculosis: a randomized controlled trial for pharmacogenetics-based therapy. Eur J Clin Pharmacol, 2013, 69(5):1091-1101. doi: 10.1007/s00228-012-1429-9.
doi: 10.1007/s00228-012-1429-9 |
[20] |
Donald PR, Parkin DP, Seifart HI, et al. The influence of dose and N-acetyltransferase-2 (NAT2) genotype and phenotype on the pharmacokinetics and pharmacodynamics of isoniazid. Eur J Clin Pharmacol, 2007, 63(7):633-639. doi: 10.1007/s00228-007-0305-5.
doi: 10.1007/s00228-007-0305-5 |
[21] |
Kubota R, Ohno M, Hasunuma T, et al. Dose-escalation study of isoniazid in healthy volunteers with the rapid acetylator genotype of arylamine N-acetyltransferase 2. Eur J Clin Pharmacol, 2007, 63(10):927-933. doi: 10.1007/s00228-007-0333-1.
doi: 10.1007/s00228-007-0333-1 |
[22] |
Kinzig-Schippers M, Tomalik-Scharte D, Jetter A, et al. Should we use N-acetyltransferase type 2 genotyping to personalize isoniazid doses? Antimicrob Agents Chemother, 2005, 49(5):1733-1738. doi: 10.1128/AAC.49.5.1733-1738.2005.
doi: 10.1128/AAC.49.5.1733-1738.2005 |
[23] |
Huerta-García AP, Medellín-Garibay SE, Ortiz-Álvarez A, et al. Population pharmacokinetics of isoniazid and dose recommendations in Mexican patients with tuberculosis. Int J Clin Pharm, 2020, 42(4):1217-1226. doi: 10.1007/s11096-020-01086-1.
doi: 10.1007/s11096-020-01086-1 |
[24] |
Hu Y, Chen S, Yu X, et al. Rapid identification of the NAT2 genotype in tuberculosis patients by multicolor melting curve analysis. Pharmacogenomics, 2016, 17(11):1211-1218. doi: 10.2217/pgs-2016-0026.
doi: 10.2217/pgs-2016-0026 |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||