Chinese Journal of Antituberculosis ›› 2020, Vol. 42 ›› Issue (10): 1100-1108.doi: 10.3969/j.issn.1000-6621.2020.10.016
• Original Articles • Previous Articles Next Articles
QIU Qian*, LIU Dong-xin, LIU Chun-fa, QIU Jie, YAN Xiao-feng(), ZHAO Yan-lin(
)
Received:
2020-04-20
Online:
2020-10-10
Published:
2020-10-15
Contact:
YAN Xiao-feng,ZHAO Yan-lin
E-mail:2429918342@qq.com;zhaoyl@chinacdc.cn
QIU Qian, LIU Dong-xin, LIU Chun-fa, QIU Jie, YAN Xiao-feng, ZHAO Yan-lin. Metagenomic analysis of respiratory tract microbial flora distribution characteristics in pulmonary tuberculosis patients[J]. Chinese Journal of Antituberculosis, 2020, 42(10): 1100-1108. doi: 10.3969/j.issn.1000-6621.2020.10.016
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2020.10.016
研究作者 及文献 | 发表 年份 | 国家 | 检测方法 | 16S rRNA 测序区域 | 测序平台 | 健康对照组 | 肺结核组 | |||
---|---|---|---|---|---|---|---|---|---|---|
样本数 | 样本类型 | 样本数 | 样本类型 | |||||||
Cui等[ | 2012 | 中国 | 16S rRNA测序 | V3 | Roche/454 | 24 | 唾液,咽部分泌物 | 31 | 痰液 | |
Cheung等[ | 2013 | 中国 | 16S rRNA测序 | V1-V2 | Roche/454 | 14 | 痰液 | 22 | 痰液 | |
Wu等[ | 2013 | 中国 | 16S rRNA测序 | V1-V2 | Roche/454 | 20 | 咽拭子 | 75 | 痰液 | |
Botero等[ | 2014 | 哥伦比亚 | 16S rRNA测序 | V1-V2 | Roche/454 | 6 | 鼻腔,口咽分泌物 | 6 | 鼻腔,口咽 分泌物,痰液 | |
Zhou等[ | 2015 | 中国 | 16S rRNA测序 | V3 | Roche/454 | 24 | 唾液,咽部分泌物 | 32 | BALF | |
Bassis等[ | 2015 | 美国 | 16S rRNA测序 | V1-V2 | Roche/454 | 72 | 口腔冲洗液, 鼻拭子,BALF | N/A | N/A | |
Dube等[ | 2016 | 南非 | Multiplex RT PCR | N/A | N/A | N/A | N/A | 34 | 鼻咽分泌物 | |
Krishna等[ | 2016 | 印度 | 16S rRNA测序 | V6-V7 | Ion Torrent | 16 | 痰液 | 25 | 痰液 | |
Vázquez-Pérez等[ | 2020 | 墨西哥 | 16S rRNA测序 | 全部可变区域 | Illumina | 10 | BALF | 6 | BALF |
[1] | World Health Organization. Global tuberculosis report 2019. Geneva: World Health Organization, 2019. |
[2] |
Eshetie S, Van Soolingen D. The respiratory microbiota: new insights into pulmonary tuberculosis. BMC Infect Dis, 2019,19(1):92. doi: 10.1186/s12879-019-3712-1.
doi: 10.1186/s12879-019-3712-1 URL pmid: 30683056 |
[3] |
Kraemer JG, Ramette A, Aebi S, et al. Influence of pig farming on the human nasal microbiota: key role of airborne microbial communities. Appl Environ Microbiol, 2018,84(6):e02470-17. doi: 10.1128/AEM.02470-17.
doi: 10.1128/AEM.02470-17 URL pmid: 29330190 |
[4] |
Naidoo CC, Nyawo GR, Wu BG, et al. The microbiome and tuberculosis: state of the art, potential applications, and defining the clinical research agenda. Lancet Respir Med, 2019,7(10):892-906. doi: 10.1016/S2213-2600(18)30501-0.
doi: 10.1016/S2213-2600(18)30501-0 URL pmid: 30910543 |
[5] |
Vázquez-Pérez JA, Carrillo CO, Iñiguez-García MA, et al. Alveolar microbiota profile in patients with human pulmonary tuberculosis and interstitial pneumonia. Microb Pathog, 2020,139:103851. doi: 10.1016/j.micpath.2019.103851.
doi: 10.1016/j.micpath.2019.103851 URL pmid: 31715320 |
[6] |
Cui Z, Zhou Y, Li H, et al. Complex sputum microbial composition in patients with pulmonary tuberculosis. BMC Microbiol, 2012,12:276. doi: 10.1186/1471-2180-12-276.
doi: 10.1186/1471-2180-12-276 URL pmid: 23176186 |
[7] |
Cheung MK, Lam WY, Fung WY, et al. Sputum microbiota in tuberculosis as revealed by 16S rRNA pyrosequencing. PLoS One, 2013,8(1):e54574. doi: 10.1371/journal.pone.0054574.
doi: 10.1371/journal.pone.0054574 URL pmid: 23365674 |
[8] |
Wu J, Liu W, He L, et al. Sputum microbiota associated with new, recurrent and treatment failure tuberculosis. PLoS One, 2013,8(12):e83445. doi: 10.1371/journal.pone.0083445.
doi: 10.1371/journal.pone.0083445 URL pmid: 24349510 |
[9] |
Botero LE, Delgado-Serrano L, Cepeda ML, et al. Respiratory tract clinical sample selection for microbiota analysis in patients with pulmonary tuberculosis. Microbiome, 2014,2:29. doi: 10.1186/2049-2618-2-29.
doi: 10.1186/2049-2618-2-29 URL pmid: 25225609 |
[10] |
Zhou Y, Lin F, Cui Z, et al. Correlation between Either Cupriavidus or Porphyromonas and Primary Pulmonary Tuberculosis Found by Analysing the Microbiota in Patients’ Bronchoalveolar Lavage Fluid. PLoS One, 2015,10(5):e0124194. doi: 10.1371/journal.pone.0124194.
doi: 10.1371/journal.pone.0124194 URL pmid: 26000957 |
[11] |
Bassis CM, Erb-Downward JR, Dickson RP, et al. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. mBio, 2015,6(2):e00037. doi: 10.1128/mBio.00037-15.
doi: 10.1128/mBio.00037-15 URL pmid: 25736890 |
[12] |
Dube FS, Kaba M, Robberts FJ, et al. Respiratory microbes present in the nasopharynx of children hospitalised with suspected pulmonary tuberculosis in Cape Town, South Africa. BMC Infect Dis, 2016,16(1):597. doi: 10.1186/s12879-016-1934-z.
doi: 10.1186/s12879-016-1934-z URL pmid: 27776489 |
[13] |
Krishna P, Jain A, Bisen PS. Microbiome diversity in the sputum of patients with pulmonary tuberculosis. Eur J Clin Microbiol Infect Dis, 2016,35(7):1205-1210. doi: 10.1007/s10096-016-2654-4.
doi: 10.1007/s10096-016-2654-4 URL pmid: 27142586 |
[14] |
Hong BY, Paulson JN, Stine OC, et al. Meta-analysis of the lung microbiota in pulmonary tuberculosis. Tuberculosis (Edinb), 2018,109:102-108. doi: 10.1016/j.tube.2018.02.006.
doi: 10.1016/j.tube.2018.02.006 URL |
[15] |
Winglee K, Eloe-Fadrosh E, Gupta S, et al. Aerosol Mycobacterium tuberculosis infection causes rapid loss of diversity in gut microbiota. PLoS One, 2014,9(5):e97048. doi: 10.1371/journal.pone.0097048.
doi: 10.1371/journal.pone.0097048 URL pmid: 24819223 |
[16] |
Niederman MS, Nair GB, Matt U, et al. Update in Lung Infections and Tuberculosis 2018. Am J Respir Crit Care Med, 2019,200(4):414-422. doi: 10.1164/rccm.201903-0606UP.
doi: 10.1164/rccm.201903-0606UP URL pmid: 31042415 |
[17] |
Namasivayam S, Maiga M, Yuan W, et al. Longitudinal profiling reveals a persistent intestinal dysbiosis triggered by conventional anti-tuberculosis therapy. Microbiome, 2017,5(1):71. doi: 10.1186/s40168-017-0286-2.
doi: 10.1186/s40168-017-0286-2 URL pmid: 28683818 |
[18] |
Luo M, Liu Y, Wu P, et al. Alternation of gut microbiota in patients with pulmonary tuberculosis. Front Physiol, 2017,8:822. doi: 10.3389/fphys.2017.00822.
doi: 10.3389/fphys.2017.00822 URL pmid: 29204120 |
[19] |
Kostic AD, Gevers D, Siljander H, et al. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe, 2015,17(2):260-273. doi: 10.1016/j.chom.2015.01.001.
doi: 10.1016/j.chom.2015.01.001 URL pmid: 25662751 |
[20] |
Bajaj JS. Alcohol, liver disease and the gut microbiota. Nat Rev Gastroenterol Hepatol, 2019,16(4):235-246. doi: 10.1038/s41575-018-0099-1.
doi: 10.1038/s41575-018-0099-1 URL pmid: 30643227 |
[21] |
Nakhaee M, Rezaee A, Basiri R, et al. Relation between lower respiratory tract microbiota and type of immune response against tuberculosis. Microb Pathog, 2018,120:161-165. doi: 10.1016/j.micpath.2018.04.054.
doi: 10.1016/j.micpath.2018.04.054 URL pmid: 29727705 |
[22] |
Namasivayam S, Sher A, Glickman MS, et al. The Microbiome and Tuberculosis: Early Evidence for Cross Talk. mBio, 2018,9(5):e01420-18. doi: 10.1128/mBio.01420-18.
doi: 10.1128/mBio.01420-18 URL pmid: 30228238 |
[23] |
Osei Sekyere J, Maningi NE, Fourie PB. Mycobacterium tuberculosis, antimicrobials, immunity, and lung-gut microbiota crosstalk: current updates and emerging advances. Ann N Y Acad Sci, 2020,1467(1):21-47. doi: 10.1111/nyas.14300.
URL pmid: 31989644 |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||