Chinese Journal of Antituberculosis ›› 2020, Vol. 42 ›› Issue (6): 583-589.doi: 10.3969/j.issn.1000-6621.2020.06.009
• Original Articles • Previous Articles Next Articles
HONG Chuang-yue, YANG Ting-ting, LI Jin-li, LI Shuang-jun, WU Li-kai, YANG Zheng, TAN Wei-guo()
Received:
2020-03-16
Online:
2020-06-10
Published:
2020-06-11
Contact:
TAN Wei-guo
E-mail:twg202@163.com
HONG Chuang-yue, YANG Ting-ting, LI Jin-li, LI Shuang-jun, WU Li-kai, YANG Zheng, TAN Wei-guo. Analysis of characteristic of resistant gene mutations among multidrug-resistant Mycobacterium tuberculosis in Shenzhen[J]. Chinese Journal of Antituberculosis, 2020, 42(6): 583-589. doi: 10.3969/j.issn.1000-6621.2020.06.009
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2020.06.009
药品 | 基因突变株数 | 突变率(%) | 突变基因类型 | 株数 | 构成比(%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
INH | 432 | 96.6 | katG-315-S/T | 353 | 81.7 | |||||
inhA-15-C/T | 27 | 6.3 | ||||||||
katG-315-S/N | 10 | 2.3 | ||||||||
katG-315-S/T+inhA-15-C/T | 9 | 2.1 | ||||||||
其他 | 33 | 7.6 | ||||||||
RFP | 432 | 96.6 | rpoB-450-S/L | 258 | 59.7 | |||||
rpoB-445-H/Y | 15 | 3.5 | ||||||||
rpoB-445-H/N | 15 | 3.5 | ||||||||
rpoB-445-H/D | 14 | 3.2 | ||||||||
rpoB-430-L/P | 12 | 2.8 | ||||||||
rpoB-445-H/L | 11 | 2.5 | ||||||||
rpoB-435-D/V | 9 | 2.1 | ||||||||
rpoB-452-L/P | 8 | 1.8 | ||||||||
rpoB-441-S/Q | 7 | 1.6 | ||||||||
rpoB-430-L/P+rpoB-445-H/N | 7 | 1.6 | ||||||||
rpoB-445-H/R | 6 | 1.4 | ||||||||
rpoB-430-L/P+rpoB-435-D/G | 6 | 1.4 | ||||||||
rpoB-445-H/R+rpoB-445-H/N | 5 | 1.2 | ||||||||
其他 | 59 | 13.7 | ||||||||
EMB | 265 | 59.3 | embB-306-M/V | 94 | 35.5 | |||||
embB-306-M/I | 53 | 20.0 | ||||||||
embB-497-Q/R | 20 | 7.5 | ||||||||
embB-406-G/D | 13 | 4.9 | ||||||||
embB-406-G/A | 12 | 4.5 | ||||||||
embB-306-M/L | 10 | 3.8 | ||||||||
embB-354-D/A | 10 | 3.8 | ||||||||
embB-406-G/S | 9 | 3.4 | ||||||||
embB-1024-D/N | 5 | 1.9 | ||||||||
其他 | 39 | 14.7 | ||||||||
PZA | 123 | 27.5 | pncA启动子-11-T/C | 11 | 8.9 | |||||
pncA-141-Q/* | 9 | 7.3 | ||||||||
pncA-159-L/R | 6 | 4.9 | ||||||||
pncA-175-M/V | 6 | 4.9 | ||||||||
pncA-76-T/P | 6 | 4.9 | ||||||||
pncA-142-T/A | 5 | 4.1 | ||||||||
其他 | 80 | 65.0 | ||||||||
药品 | 基因突变株数 | 突变率(%) | 突变基因类型 | 株数 | 构成比(%) | |||||
Sm | 300 | 67.1 | rpsL-43-K/R | 198 | 66.0 | |||||
rpsL-88-K/R | 47 | 15.7 | ||||||||
rrs-1401-A/G | 8 | 2.7 | ||||||||
rrs-514-A/C | 21 | 7.0 | ||||||||
rpsL-43-K/R+rrs-1401-A/G | 13 | 4.3 | ||||||||
其他 | 13 | 4.3 | ||||||||
Ofx | 124 | 27.7 | gyrA-90-A/V | 39 | 31.5 | |||||
gyrA-94-D/G | 37 | 29.8 | ||||||||
gyrA-94-D/A | 16 | 12.9 | ||||||||
gyrA-94-D/N | 8 | 6.5 | ||||||||
gyrA-94-D/Y | 7 | 5.6 | ||||||||
其他 | 17 | 13.7 | ||||||||
Am | 52 | 11.6 | rrs-1401-A/G | 25 | 48.1 | |||||
rrs-514-A/C | 23 | 44.2 | ||||||||
其他 | 4 | 7.7 | ||||||||
Cm | 27 | 6.0 | rrs-1401-A/G | 27 | 100.0 | |||||
Km | 32 | 7.2 | rrs-1401-A/G | 27 | 84.4 | |||||
其他 | 5 | 15.6 | ||||||||
Eto | 57 | 12.8 | inhA-15-C/T | 48 | 84.2 | |||||
其他 | 9 | 15.8 | ||||||||
PAS | 32 | 7.2 | folC-43-I/T | 5 | 15.6 | |||||
thyA-75-H/N | 10 | 31.3 | ||||||||
其他 | 17 | 53.1 |
药品 | 突变类型 | L2基因型(378株) | L4基因型 (67株) | χ2值b | P值 | ||||
---|---|---|---|---|---|---|---|---|---|
突变株数 | L2.3型 (231株) | L2.2型 (140株) | χ2值a | P值 | |||||
INH | katG-315-S/T | 301(79.6) | 172(74.5) | 124(88.6) | 10.764 | 0.000 | 41(61.2) | 10.874 | 0.001 |
inhA-15-C/T | 23(6.1) | 19(8.2) | 4(2.9) | 4.319 | 0.038 | 4(6.0) | 0.001 | 0.971 | |
RFP | rpoB-450-S/L | 216(57.1) | 143(61.9) | 69(49.3) | 5.668 | 0.017 | 41(61.2) | 0.383 | 0.536 |
EMB | embB-306-M/V | 87(23.0) | 50(21.6) | 35(25.0) | 0.556 | 0.456 | 7(10.4) | 5.396 | 0.020 |
embB-306-M/I | 43(11.4) | 29(12.6) | 13(9.3) | 0.928 | 0.335 | 10(14.9) | 0.684 | 0.408 | |
Sm | rpsL-43-K/R | 191(50.5) | 137(59.3) | 53(37.9) | 16.053 | 0.000 | 7(10.4) | 37.021 | 0.000 |
rpsL-88-K/R | 44(11.6) | 23(9.9) | 18(12.9) | 0.746 | 0.388 | 3(4.5) | 3.091 | 0.079 | |
Ofx | gyrA-90-A/V | 36(9.5) | 25(10.8) | 10(7.1) | 1.381 | 0.240 | 3(4.5) | 1.812 | 0.178 |
gyrA-94-D/G | 34(9.0) | 18(7.8) | 16(11.4) | 1.385 | 0.239 | 3(4.5) | 1.523 | 0.217 | |
SLID | rrs-1401-A/G | 24(6.3) | 11(4.8) | 13(9.3) | 2.948 | 0.086 | 1(1.5) | 2.532 | 0.112 |
Eto | inhA-15-C/T | 41(10.8) | 36(15.6) | 5(3.6) | 12.797 | 0.000 | 7(10.4) | 0.009 | 0.923 |
[1] | World Health Organization. Global tuberculosis report 2017. Geneva:World Health Organization, 2017. |
[2] |
Shea J, Halse TA, Lapierre P , et al. Comprehensive whole-genome sequencing and reporting of drug resistance profiles on clinical cases of Mycobacterium tuberculosis in New York State. J Clin Microbiol, 2017,55(6):1871-1882.
doi: 10.1128/JCM.00298-17 URL |
[3] |
Javed H, Bakula Z, Pleń M , et al. Evaluation of Genotype MTBDRplus and MTBDRsl Assays for Rapid Detection of Drug Resistance in Extensively Drug-Resistant Mycobacterium tuberculosis Isolates in Pakistan. Front Microbiol, 2018,9:2265.
doi: 10.3389/fmicb.2018.02265 URL |
[4] |
Jian J, Yang X, Yang J , et al. Evaluation of the GenoType MTBDRplus and MTBDRsl for the detection of drug-resistant Mycobacterium tuberculosis on isolates from Beijing, China. Infect Drug Resist, 2018,11:1627-1634.
doi: 10.2147/IDR URL |
[5] |
Chen X, He G, Wang S , et al. Evaluation of whole-genome sequence method to diagnose resistance of 13 anti-tuberculosis drugs and characterize resistance genes in clinical multi-drug resistance Mycobacterium tuberculosis isolates from China. Front Microbiol, 2019,10:1741.
doi: 10.3389/fmicb.2019.01741 URL |
[6] |
Allix-Béguec C, Arandjelovic I, Bi L , et al. Prediction of susceptibility to first-line tuberculosis drugs by DNA sequencing. N Engl J Med, 2018,379(15):1403-1415.
doi: 10.1056/NEJMoa1800474 URL |
[7] |
Nimmo C, Doyle R, Burgess C , et al. Rapid identification of a Mycobacterium tuberculosis full genetic drug resistance profile through whole genome sequencing directly from sputum. Int J Infect Dis, 2017,62:44-46.
doi: 10.1016/j.ijid.2017.07.007 URL |
[8] |
Liu Q, Ma A, Wei L , et al. China’s tuberculosis epidemic stems from historical expansion of four strains of Mycobacterium tuberculosis. Nat Ecol Evol, 2018,2(12):1982-1992.
doi: 10.1038/s41559-018-0680-6 URL |
[9] |
Coll F, McNerney R, Guerra-Assunção JA , et al. A robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nat Commun, 2014,5:4812.
doi: 10.1038/ncomms5812 URL |
[10] | Liu Q, Luo T, Dong X , et al. Genetic features of Mycobacterium tuberculosis modern Beijing sublineage. Emerg Microbes Infect, 2016,5(2):e14. |
[11] |
Coll F, McNerney R, Preston MD , et al.Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Med, 2015,7(1):51.
doi: 10.1186/s13073-015-0164-0 URL |
[12] | Sandgren A, Strong M, Muthukrishnan P , et al. Tuberculosis drug resistance mutation database. PLoS Med, 2009,6(2):e2. |
[13] | World Health Organization. Molecular line probe assays for rapid screening of patients at risk of multidrug-resistant tuberculosis (MDR-TB). Geneva: World Health Organization, 2008. |
[14] | World Health Organization. Xpert MTB/RIF assay for the dia-gnosis of pulmonary and extrapulmonary TB in adults and children: policy update. Geneva: World Health Organization, 2013. |
[15] |
Walker TM, Kohl TA, Omar SV , et al. Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis, 2015,15(10):1193-1202.
doi: 10.1016/S1473-3099(15)00062-6 URL |
[16] |
Polu GP, Mohammad Shaik J, Kota NMK , et al. Analysis of drug resistance mutations in pulmonary Mycobacterium tuberculosis isolates in the Southern coastal region of Andhra Pradesh, India. Braz J Infect Dis, 2019,23(5):281-290.
doi: 10.1016/j.bjid.2019.07.002 URL |
[17] | Alene KA, Viney K, McBryde ES , et al. Risk factors for multidrug-resistant tuberculosis in northwest Ethiopia: A case-control study. Transbound Emerg Dis, 2019,66(4):1611-1618. |
[18] |
Madrazo-Moya CF, Cancino-Muñoz I, Cuevas-Córdoba B , et al. Whole genomic sequencing as a tool for diagnosis of drug and multidrug-resistance tuberculosis in an endemic region in Mexico. PLoS One, 2019,14(6):e0213046.
doi: 10.1371/journal.pone.0213046 URL |
[19] |
Couvin D, Reynaud Y, Rastogi N . Two tales: Worldwide distribution of Central Asian (CAS) versus ancestral East-African Indian (EAI) lineages of Mycobacterium tuberculosis underlines a remarkable cleavage for phylogeographical, epidemiological and demographical characteristics. PLoS One, 2019,14(7):e0219706.
doi: 10.1371/journal.pone.0219706 URL |
[20] |
Luo M, Li K, Zhang H , et al. Molecular characterization of para-aminosalicylic acid resistant Mycobacterium tuberculosis clinical isolates in southwestern China. Infect Drug Resist, 2019,12:2269-2275.
doi: 10.2147/IDR URL |
[21] | 李崇建, 鲍金圭, 陈焯彬 , 等. 广西钦州地区结核分枝杆菌相关耐药基因变异特征分析. 国际检验医学杂志, 2018,39(8):936-938. |
[22] | 车洋, 杨天池, 平国华 , 等. 宁波地区耐多药结核分枝杆菌乙胺丁醇耐药embB基因突变研究. 中国预防医学杂志, 2018,19(7):505-508. |
[23] | 胡彦, 刘洁, 沈静 , 等. 重庆地区耐多药结核分枝杆菌对氟喹诺酮类药物耐药的相关基因特征分析. 中国防痨杂志, 2018,40(10):1060-1065. |
[24] | 朱大冕, 胡代玉, 刘洁 , 等. 重庆地区耐多药结核分枝杆菌吡嗪酰胺耐药基因突变的特征分析. 中国防痨杂志, 2018,40(2):177-182. |
[25] |
Folkvardsen DB, Svenson E, Thomsen VØ , et al. Can molecular methods detect 1% isoniazid resistance in Mycobacterium tuberculosis? J Clin Microbiol, 2013,51(5):1596-1599.
doi: 10.1128/JCM.00472-13 URL |
[26] |
Almeida Da Silva PE, Palomino JC . Molecular basis and mecha-nisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J Antimicrob Chemother, 2011,66(7):1417-1430.
doi: 10.1093/jac/dkr173 URL |
[27] |
Dantas NGT, Suffys PN, Carvalho WDS , et al. Correlation between the BACTEC MGIT 960 culture system with Genotype MTBDRplus and TB-SPRINT in multidrug resistant Mycobacterium tuberculosis clinical isolates from Brazil. Mem Inst Oswaldo Cruz, 2017,112(11):769-774.
doi: 10.1590/0074-02760170062 URL |
[28] |
Zhang X, Liu L, Zhang Y , et al. Genetic determinants involved in p-aminosalicylic acid resistance in clinical isolates from tuberculosis patients in northern China from 2006 to 2012. Antimicrob Agents Chemother, 2015,59(2):1320-1324.
doi: 10.1128/AAC.03695-14 URL |
[29] |
Kardan-Yamchi J, Kazemian H, Battaglia S , et al. Whole genome sequencing results associated with minimum inhibitory concentrations of 14 anti-tuberculosis drugs among rifampicin-resistant isolates of Mycobacterium tuberculosis from Iran. J Clin Med, 2020,9(2):465.
doi: 10.3390/jcm9020465 URL |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||