Chinese Journal of Antituberculosis ›› 2020, Vol. 42 ›› Issue (3): 259-265.doi: 10.3969/j.issn.1000-6621.2020.03.015
• Original Articles • Previous Articles Next Articles
GAO Tian-hui1,SHU Wei2,GAO Jing-tao2,LU Yu1(),LI Qi2(
)
Received:
2019-11-06
Online:
2020-03-10
Published:
2020-03-18
Contact:
Yu LU,Qi LI
E-mail:luyu4876@hotmail.com;lq0703@hotmail.com
GAO Tian-hui,SHU Wei,GAO Jing-tao,LU Yu,LI Qi. Analysis of clarithromycin resistance and its influencing factors in 254 patients with drug-resistant tuberculosis[J]. Chinese Journal of Antituberculosis, 2020, 42(3): 259-265. doi: 10.3969/j.issn.1000-6621.2020.03.015
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2020.03.015
药品 | 耐药肺结核患者(254例) | MDR/XDR-TB组(229例) | MR-TB组(25例) | |||
---|---|---|---|---|---|---|
例数 | 耐药率(%) | 例数 | 耐药率(%) | 例数 | 耐药率(%) | |
Clr | 17 | 6.69 | 17 | 7.42 | 0 | 0.00 |
Lfx | 94 | 37.01 | 94 | 41.05 | 0 | 0.00 |
Mfx | 32 | 12.60 | 32 | 13.97 | 0 | 0.00 |
Cfz | 33 | 12.99 | 33 | 14.41 | 0 | 0.00 |
EMB | 104 | 40.94 | 102 | 44.54 | 2 | 8.00 |
Am | 55 | 21.65 | 55 | 24.02 | 0 | 0.00 |
Sm | 198 | 77.95 | 198 | 86.46 | 0 | 0.00 |
Pto | 50 | 19.69 | 50 | 21.83 | 0 | 0.00 |
PAS | 89 | 35.04 | 89 | 38.86 | 0 | 0.00 |
Pa | 127 | 50.00 | 127 | 55.46 | 0 | 0.00 |
Km | 59 | 23.23 | 59 | 25.76 | 0 | 0.00 |
Cm | 74 | 29.13 | 74 | 32.31 | 0 | 0.00 |
RFP | 218 | 85.83 | 211 | 92.14 | 7 | 28.00 |
Rpt | 226 | 88.98 | 217 | 94.76 | 9 | 36.00 |
Rfb | 197 | 77.56 | 190 | 82.97 | 7 | 28.00 |
INH | 243 | 95.67 | 229 | 100.00 | 14 | 56.00 |
药品 | Clr敏感组(212例) | Clr耐药组(17例) | χ2值 | P值 |
---|---|---|---|---|
Lfx | 84(39.62) | 10(58.82) | 2.398 | 0.122 |
Mfx | 24(11.32) | 8(47.06) | 16.721 | <0.01 |
Cfz | 21(9.91) | 12(70.59) | 46.987 | <0.01 |
EMB | 88(41.51) | 14(82.35) | 10.628 | 0.001 |
Pto | 47(22.17) | 3(17.65) | 0.017 | 0.897 |
Am | 46(21.70) | 9(52.94) | 6.793 | 0.009 |
Sm | 183(86.32) | 15(88.24) | 0.000 | 1.000 |
PAS | 76(35.85) | 13(76.47) | 10.930 | 0.001 |
Pa | 112(52.83) | 15(88.24) | 7.986 | 0.005 |
Km | 50(23.58) | 8(47.06) | 3.428 | 0.072 |
Cm | 61(28.77) | 13(76.47) | 16.370 | <0.01 |
临床因素 | Clr敏感组(212例) | Clr耐药组(17例) | χ2值 | P值 | ||||
---|---|---|---|---|---|---|---|---|
性别 | 1.168 | 0.377 | ||||||
男 | 162(76.42) | 11(64.71) | ||||||
女 | 50(23.58) | 6(35.29) | ||||||
年龄组(岁) | -0.932 | 0.351 | ||||||
16~ | 40(18.88) | 6(35.30) | ||||||
26~ | 49(23.11) | 2(11.76) | ||||||
36~ | 25(11.79) | 3(17.65) | ||||||
46~ | 49(23.11) | 2(11.76) | ||||||
≥56 | 49(23.11) | 4(23.53) | ||||||
病程(月) | 0.136 | 0.712 | ||||||
≤36 | 122(57.55) | 9(52.94) | ||||||
>36 | 90(42.45) | 8(47.06) | ||||||
耐药数目(个) | 12.711 | <0.001 | ||||||
≤7 | 120(56.60) | 2(11.76) | ||||||
>7 | 92(43.40) | 15(88.24) | ||||||
BMI | -1.048 | 0.295 | ||||||
无数据 | 15(7.07) | 1(5.88) | ||||||
<18.50 | 57(26.89) | 7(41.18) | ||||||
18.50~ | 115(54.25) | 8(47.06) | ||||||
≥25.00 | 25(11.79) | 1(5.88) | ||||||
临床因素 | Clr敏感组(212例) | Clr耐药组(17例) | χ2值 | P值 | ||||
吸烟史 | 0.124 | 0.801 | ||||||
无 | 128(60.38) | 11(64.71) | ||||||
有 | 84(39.62) | 6(35.29) | ||||||
并发病毒性肝炎 | 13(6.13) | 4(23.53) | 6.931 | 0.027 | ||||
患者类型 | 0.293 | 0.769 | ||||||
初治 | 50(23.58) | 5(29.41) | ||||||
复治 | 162(76.42) | 12(70.59) | ||||||
既往Clr治疗史 | 0.138 | 0.756 | ||||||
有 | 32(15.09) | 2(11.76) | ||||||
无 | 180(84.91) | 15(88.24) | ||||||
痰GeneXpert-rpoB突变结果 | 2.515 | 0.133 | ||||||
有 | 188(88.68) | 14(82.35) | ||||||
无 | 24(11.32) | 3(17.65) | ||||||
CT扫描显示是否有空洞 | 1.798 | 0.180 | ||||||
有 | 114(53.77) | 12(70.59) | ||||||
无 | 98(46.23) | 5(29.41) |
[1] | Global tuberculosis report 2019. Global tuberculosis report 2019. Genenva:World Health Organization, 2019. |
[2] | Global tuberculosis report 2019. WHO consolidated guidelines on drug-resistant tuberculosis treatment. WHO/CDS/TB/2019.7. Geneva: World Health Organization, 2019. |
[3] | Global tuberculosis report 2019. Companion handbook to the WHO guidelines for the programmatic management of drug-resistant tuberculosis. Geneva: World Health Organization, 2014. |
[4] | Global tuberculosis report 2019. Treatment guidelines for drug-resistant tuberculosis. 2016 update. WHO/HTM/TB/2016.04. Geneva: World Health Organization, 2016. |
[5] | Bolhuis MS, van der Laan T, Kosterink JG , et al. In vitro synergy between linezolid and clarithromycin against Mycobacterium tuberculosis. Eur Respir J, 2014,44(3):808-811. |
[6] | Cavalieri SJ, Biehle JR, Sanders WJ . Synergistic activities of clarithromycin and antituberculous drugs against multidrug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother, 1995,39(7):1542-1545. |
[7] | 陆宇, 王彬, 赵伟杰 , 等. 氯法齐明与其他抗结核药物联用对结核分枝杆菌的作用. 中华结核和呼吸杂志, 2010,33(9):675-678. |
[8] | Falzari K, Zhu Z, Pan D , et al. In Vitro and In Vivo Activities of Macrolide Derivatives against Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2005,49(4):1447-1454. |
[9] | van der Paardt AF, Wilffert B, Akkerman OW , et al. Evaluation of macrolides for possible use against multidrug-resistant Mycobacterium tuberculosis. Eur Respir J, 2015,46(2):444-455. |
[10] | 中华人民共和国国家卫生和计划生育委员会. WS 288—2017 肺结核诊断. 2017-11-09. |
[11] | 中华人民共和国国家卫生和计划生育委员会. WS 196—2017结核病分类. 2017-11-09. |
[12] | 赵雁林, 逄宇 . 结核病实验室检验规程. 北京: 人民卫生出版社, 2015: 59-65. |
[13] | Global tuberculosis report 2019. Definitions and reporting framework for tuberculosis-2013 revision. Geneva: World Health Organization, 2013. |
[14] | 李君莲, 张敬蕊, 李桂莲 , 等. 新疆地区93株耐多药结核分枝杆菌耐药情况分析. 中国预防医学杂志, 2012,13(9):645-649. |
[15] | 邝小佳, 邝浩斌, 蔡杏珊 , 等. 广州地区5年间耐多药结核分枝杆菌药物敏感试验结果分析. 临床肺科杂志, 2016,21(1):10-12. |
[16] | 贾芳, 宋青山, 黄海荣 . 某医院广泛耐药结核病住院患者耐药特点及危险因素分析. 中华疾病控制杂志, 2019,23(3):336-340. |
[17] | 李影, 张东浩 . 531株结核分枝杆菌的药敏分析. 中国医药指南, 2015,13(26):156-157. |
[18] | Morris RP, Nguyen L, Gatfield J , et al. Ancestral Antibiotic Resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A, 2005,102(34):12200-12205. |
[19] | Warit S, Phunpruch S, Jityam C , et al. Genetic characterisation of a whiB7 mutant of a Mycobacterium tuberculosis clinical strain. J Glob Antimicrob Resist, 2015,3(4):262-266. |
[20] | Buriánková K, Doucet-Populaire F, Dorson O , et al. Molecular Basis of Intrinsic Macrolide Resistance in the Mycobacterium tuberculosis Complex. Antimicrob Agents Chemother, 2004,48(1):143-150. |
[21] | Phunpruch S, Warit S, Suksamran R , et al. A role for 16S rRNA dimethyltransferase (ksgA) in intrinsic clarithromycin resistance in Mycobacterium tuberculosis. Int J Antimicrob Agents, 2013,41(6):548-551. |
[22] | Danilchanka O, Pires D, Anes E , et al. The Mycobacterium tuberculosis outer membrane channel protein CpnT confers susceptibility to toxic molecules. Antimicrob Agents Chemother, 2015,59(4):2328-2336. |
[23] | Vester B, Douthwaite S . Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrob Agents Chemother, 2001,45(1):1-12. |
[24] | Pang Y, Zhu D, Zheng H , et al. Prevalence and molecular characterization of pyrazinamide resistance among multidrug-resistant Mycobacterium tuberculosis isolates from Southern China. BMC Infect Dis, 2017,17(1):711. |
[25] | Pule CM, Sampson SL, Warren RM , et al. Efflux pump inhibitors: targeting mycobacterial efflux systems to enhance TB therapy. J Antimicrob Chemother, 2016,71(1):17-26. |
[26] | Te Brake LHM, de Knegt GJ, de Steenwinkel JE , et al. The Role of Efflux Pumps in Tuberculosis Treatment and Their Promise as a Target in Drug Development: Unraveling the Black Box. Annu Rev Pharmacol Toxicol, 2018,58:271-291. |
[27] | Moore RA, DeShazer D, Reckseidler S , et al. Efflux-Mediated Aminoglycoside and Macrolide Resistance in Burkholderia pseudomallei. Antimicrob Agents Chemother, 1999,43(3):465-470. |
[28] | Alame-Emane AK, Xu P, Pierre-Audigier C , et al. Pyrazinamide resistance in Mycobacterium tuberculosis arises after rifampicin and fluoroquinolone resistance. Int J Tuberc Lung Dis, 2015,19(6):679-684. |
[29] | Xianyu J, Feng J, Yang Y , et al. Correlation of oxidative stress in patients with HBV-induced liver disease with HBV genotypes and drug resistance mutations. Clin Biochem, 2018,55:21-27. |
[30] | Dharmaraja AT . Role of Reactive Oxygen Species (ROS) in Therapeutics and Drug Resistance in Cancer and Bacteria. J Med Chem, 2017,60(8):3221-3240. |
[31] | Yew WW, Chan DP, Chang KC , et al. Does oxidative stress contribute to antituberculosis drug resistance?. J Thorac Dis, 2019,11(7):E100-102. |
[32] | Amábile-Cuevas CF . Antibiotic Resistance: From Darwin to Lederberg to Keynes. Microb Drug Resist, 2013,19(2):73-87. |
[33] | O’Sullivan DM, McHugh TD, Gillespie SH . The effect of oxidative stress on the mutation rate of Mycobacterium tuberculosis with impaired catalase/peroxidase function. J Antimicrob Chemother, 2008,62(4):709-712. |
[34] | Rastogi N, Labrousse V . Extracellular and intracellular activities of clarithromycin used alone and in association with ethambutol and rifampin against Mycobacterium avium complex. Antimicrob Agents Chemother, 1991,35(3):462-470. |
[35] | Bhusal Y, Shiohira CM, Yamane N . Determination of in vitro synergy when three antimicrobial agents are combined against Mycobacterium tuberculosis. Int J Antimicrob Agents, 2005,26(4):292-297. |
[36] | Mor N, Esfandiari A . Synergistic activities of clarithromycin and pyrazinamide against Mycobacterium tuberculosis in human macrophages. Antimicrob Agents Chemother, 1997,41(9):2035-2036. |
[37] | 李琦, 姜晓颖, 高孟秋 , 等. 18个月化疗方案对耐多药肺结核患者的治疗效果分析. 中国防痨杂志, 2019,41(3):294-301. |
[38] | Van der Paardt AL, Akkerman OW, Gualano G , et al. Safety and tolerability of clarithromycin in the treatment of multidrug-resistant tuberculosis. Eur Respir J, 2017,49(3):1601612. |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||