Chinese Journal of Antituberculosis ›› 2020, Vol. 42 ›› Issue (2): 133-142.doi: 10.3969/j.issn.1000-6621.2020.02.010
• Original Articles • Previous Articles Next Articles
ZHANG Lan-yue,GENG Yi-man,JIA Hong-yan,XIAO Jing,LI Zi-hui,PAN Li-ping,SUN Yi-cheng(),ZHANG Zong-de(
)
Received:
2019-11-29
Online:
2020-02-10
Published:
2020-02-19
Contact:
Yi-cheng SUN,Zong-de ZHANG
E-mail:sunyc@ipbcams.ac.cn;zzd417@163.com
ZHANG Lan-yue,GENG Yi-man,JIA Hong-yan,XIAO Jing,LI Zi-hui,PAN Li-ping,SUN Yi-cheng,ZHANG Zong-de. Preliminary study on the gene function of a novel toxin-antitoxin system MSMEG_3435-3436 in Mycobacterium smegmatis[J]. Chinese Journal of Antituberculosis, 2020, 42(2): 133-142. doi: 10.3969/j.issn.1000-6621.2020.02.010
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2020.02.010
材料类型 | 相关特点 | 来源 |
---|---|---|
菌株 | ||
E.coli DH5α | 克隆菌株 | 北京全式金生物技术有限公司 |
M.smegmatis | MC2155 野生株 | 本实验室保存 |
SY3807 | 含pJV53-Cpf1质粒的耻垢分枝杆菌 | 本研究 |
SY6248 | 敲除了MSMEG_3435-3436的耻垢分枝杆菌菌株 | 本研究 |
SY6249 | 敲除了MSMEG_6762-6760的耻垢分枝杆菌菌株 | 本研究 |
SY3126 | 含pJV53-GFP质粒的的耻垢分枝杆菌菌株 | 本研究 |
SY3328 | MSMEG_1277-1278位置替换为LacZ的耻垢分枝杆菌菌株 | 本研究 |
SY3309 | MSMEG_1283-1284位置替换为LacZ的耻垢分枝杆菌菌株 | 本研究 |
SY6407 | MSMEG_3435-3436位置替换为LacZ的耻垢分枝杆菌菌株 | 本研究 |
SY3310 | MSMEG_4447-4448位置替换为LacZ的耻垢分枝杆菌菌株 | 本研究 |
SY3311 | MSMEG_5635-5634位置替换为LacZ的耻垢分枝杆菌菌株 | 本研究 |
质粒 | ||
pJV53 | 表达gp60 和gp61 重组蛋白的质粒,含卡那霉素抗性元件 | 文献[ |
pMV261 | 含Hsp60启动子的整合质粒,含卡那霉素抗性元件 | 文献[ |
pJV53-gfp | 表达gp60 和gp61 重组蛋白的带有gfp基因,含卡那霉素抗性元件的质粒 | 文献[ |
pJV53-Cas12a | 表达gp60 和gp61 重组蛋白的诱导Pmyc1tetO启动子控制 Cas12a 表达,含卡那霉素抗性元件的质粒 | 文献[ |
pCR-Hyg | crRNA插入Hsp60 启动子下游BpmⅠ和HindⅢ位点之间,含潮霉素抗性元件的质粒 | 文献[ |
pYC601 | 无水四环素诱导表达,含潮霉素抗性元件的质粒 | 文献[ |
pYC2034 | MSMEG_3435-3436 crRNA插入pCR-Hyg的BpmⅠ和HindⅢ位点之间,含潮霉素抗性元件的质粒 | 本研究 |
pYC2033 | MSMEG_6762-6760 crRNA插入pCR-Hyg的 BpmⅠ和HindⅢ位点之间,含潮霉素抗性元件的质粒 | 本研究 |
pYC2037 | pUC19包含dsDNA同源臂以删除MSMEG_3435-3436,含氨苄青霉素抗性元件的质粒 | 本研究 |
pYC2036 | pUC19包含dsDNA同源臂以删除MSMEG_6762-6760,含氨苄青霉素抗性元件的质粒 | 本研究 |
pYC2073 | 把MSMEG_3436基因放在pYC601的Pmyc1tetO启动子下,含潮霉素抗性元件的质粒 | 本研究 |
pYC2074 | 把MSMEG_3435-3436基因放在pYC601的Pmyc1tetO启动子下,含潮霉素抗性元件的质粒 | 本研究 |
pYC2076 | 把MSMEG_6760基因放在pYC601的Pmyc1tetO启动子下,含潮霉素抗性元件的质粒 | 本研究 |
pYC2077 | 把MSMEG_6762-6760基因放在pYC601的Pmyc1tetO启动子下,含潮霉素抗性元件的质粒 | 本研究 |
引物名称 | 引物序列(5'~3') |
---|---|
MSMEG_3436F | TCCGCATGCGGAGGAATCAGGTGAAACGACTCGATCTCGT |
MSMEG_3436R | GTCCCCAATTAATTAGCTAACTATTCGGGCCACCGCGAGG |
MSMEG_3436-3435F | TCCGCATGCGGAGGAATCAGATGACTGAGACCGCAGATCG |
MSMEG_3436-3435R | GTCCCCAATTAATTAGCTAACTATTCGGGCCACCGCGAGG |
MSMEG_6760F | TCCGCATGCGGAGGAATCAGATGCCCGTGACCGATGTGAA |
MSMEG_6760R | GTCCCCAATTAATTAGCTAATCACGCAGTGAGCAGCGCGT |
MSMEG_6760-6762F | TCCGCATGCGGAGGAATCAGGTGTGGGTGACCGTGATCGA |
MSMEG_6760-6762R | GTCCCCAATTAATTAGCTAATCACGCAGTGAGCAGCGCGT |
MSMEG_3435-3436 crRNA Top | ATGTCGAACTCACATTGGCCCCGCTGCA |
MSMEG_3435-3436 crRNA Bottom | AGCTTGCAGCGGGGCCAATGTGAGTTCGACATCT |
MSMEG_6760-6762 crRNA Top | ATACATCGGTCACGGGCATGTCAGTCCA |
MSMEG_6760-6762 crRNA Bottom | AGCTTGGACTGACATGCCCGTGACCGATGTATCT |
MSMEG_1277F | ATGCGGAGGAATCAGGATCCATGCCGTCGCTGAACATCGA |
MSMEG_1277R | GTCCCCAATTAATTAGCTAATCACGCCAAGCGGCGGTTGA |
MSMEG_1283F | ATGCGGAGGAATCAGGATCCATGGCTCTAAGCATCAAACA |
MSMEG_1283R | GTCCCCAATTAATTAGCTAATCAGGACGGCAGACCGCGGT |
MSMEG_3435F | ATGCGGAGGAATCAGGATCCATGACTGAGACCGCAGATCG |
MSMEG_3435R | GTCCCCAATTAATTAGCTAATCACCGCTGCGCAGGAGCCA |
MSMEG_4447F | ATGCGGAGGAATCAGGATCCATGACTCCCGCGCGTGACCG |
MSMEG_4447R | GTCCCCAATTAATTAGCTAATTAGGCGTCGTCCCAGTCGAC |
MSMEG_5635F | ATGCGGAGGAATCAGGATCCATGGGATTCCTGGACAAGGC |
MSMEG_5635R | GTCCCCAATTAATTAGCTAATTACTGCTGTGGTTCTTGAG |
MSMEG_3435 up HR F | TCTTCGCTATTACGCCAGCTTCCAGTTCAACCGAGACTGC |
MSMEG_3435up HR R | CGCAATTGTCTTGGCCATGACACGCCTCCATGTAGCAGT |
MSMEG_3435 down HR F | GGACTAGTTCGACGTTCTATGACAACAGCG |
MSMEG_3435 down HR R | CCCAAGCTTATTTCGGTTTGGTGGTCCACT |
LacZ F | ACTGCTACATGGAGGCGTGTCATGGCCAAGACAATTGCG |
LacZ R | CCCGGGATCCGATATCTAGACTTATTTTTGACACCAGAC |
UD-LacZ F | TCTAGATATCGGATCCCGGG |
UD-LacZ R | AGCTGGCGTAATAGCGAAGA |
F in Us for MSMEG_3435-3436+ | AGTGAATTCGAGCTCGGTACCACCGGTGATCAACGTCAAC |
R in Us for MSMEG_3435-3436 | GAAGCGAGTGACCCGATCTG |
F in Ds for MSMEG_3435-3436+ | CAGATCGGGTCACTCGCTTCGAATAGATTGTCGCGGTTCAG |
R in Ds for MSMEG_3435-3436+ | TGCATGCCTGCAGGTCGACTGCCATTTCGCTTCGGTGAG |
F in Us for MSMEG_6760-6762+ | AGTGAATTCGAGCTCGGTACTGACCGACGAGTTGCTCGAAA |
R in Us for MSMEG_6760-6762 | TCGGCCATCAACCAGATCGA |
F in Ds for MSMEG_6760-6762+ | TCGATCTGGTTGATGGCCGACACACAACGTACAACCATCTG |
R in Ds for MSMEG_6760-6762+ | TGCATGCCTGCAGGTCGACTGATGTTCGGCACCAGGTTCT |
MSMEG_3435 up F | CGTCCAGTTCAACCGAGACT |
MSMEG_ 6760 up F | TACCGCGTGATGGCAAAGGA |
F in Us for MSMEG_3435-3436 | CACCGGTGATCAACGTCAAC |
R in Ds for MSMEG_3435-3436 | GCCATTTCGCTTCGGTGAG |
F in Us for MSMEG_6760-6762 | TGACCGACGAGTTGCTCGAAA |
R in Ds for MSMEG_6760-6762 | GATGTTCGGCACCAGGTTCT |
F in down HR | GGACTAGTTCGACGTTCTATGACAACAGCG |
R in down HR | CCCAAGCTTATTTCGGTTTGGTGGTCCACT |
F | TCTAGATATCGGATCCCGGG |
R | AGCTGGCGTAATAGCGAAGA |
F in up HR | TCTTCGCTATTACGCCAGCTTCCAGTTCAACCGAGACTGC |
R in up HR | CGCAATTGTCTTGGCCATGACACGCCTCCATGTAGCAGT |
菌株 | 吸光度值 | 时间 (min) | β-半乳糖苷酶活 性(MU, | t值 | P值 | ||
---|---|---|---|---|---|---|---|
A600值( | A420值( | A550值 | |||||
SY3328:: con | 1.025±0.006 | 0.662±0.029 | 0.048 | 5.0 | 376.50±17.13 | 2.272 | 0.086 |
SY3328:: MSMEG_1277 | 0.991±0.027 | 0.550±0.025 | 0.047 | 5.0 | 315.50±20.71 | ||
SY3309:: con | 1.018±0.016 | 0.318±0.015 | 0.050 | 4.0 | 189.00±12.24 | 1.795 | 0.147 |
SY3309:: MSMEG_1283 | 1.067±0.014 | 0.297±0.007 | 0.052 | 4.0 | 160.70±9.89 | ||
SY6407:: con | 0.819±0.006 | 0.480±0.021 | 0.047 | 18.0 | 225.20±9.95 | 1.319 | 0.258 |
SY6407:: MSMEG_3435 | 0.815±0.003 | 0.476±0.006 | 0.047 | 19.0 | 211.70±2.57 | ||
SY3310: con | 0.932±0.031 | 0.417±0.022 | 0.047 | 5.5 | 221.40±12.07 | 1.949 | 0.123 |
SY3310: MSMEG_4447 | 0.839±0.029 | 0.317±0.018 | 0.047 | 5.0 | 186.60±13.17 | ||
SY3311:: con | 0.988±0.001 | 0.402±0.013 | 0.048 | 6.0 | 179.10±5.87 | 2.562 | 0.063 |
SY3311:: MSMEG_5635 | 0.944±0.037 | 0.290±0.030 | 0.052 | 5.5 | 127.70±19.21 |
[1] | Harms A, Maisonneuve E, Gerdes K . Mechanisms of bacterial persistence during stress and antibiotic exposure. Science, 2016,354(6318). pii: aaf4268. |
[2] | Keren I, Minami S, Rubin E , et al. Characterization and transcriptome analysis of Mycobacterium tuberculosis persisters. MBio, 2011,2(3):e00100-00111. |
[3] | Sala A, Bordes P, Genevaux P . Multiple toxin-antitoxin systems in Mycobacterium tuberculosis. Toxins (Basel), 2014,6(3):1002-1020. |
[4] | Kondratieva T, Azhikina T, Nikonenko B , et al. Latent tuberculosis infection:what we know about its genetic control? Tuberculosis (Edinb), 2014,94(5):462-468. |
[5] | Tsilibaris V, Maenhaut-Michel G, Mine N , et al. What is the benefit to Escherichia coli of having multiple toxin-antitoxin systems in its genome? J Bacteriol, 2007,189(17):6101-6108. |
[6] | Akarsu H, Bordes P, Mansour M , et al. TASmania: A bacterial Toxin-Antitoxin Systems database. PLoS Comput Biol, 2019,15(4):e1006946. |
[7] | Reyrat JM, Kahn D . Mycobacter smegmatis: an absurd model for tuberculosis? Trends Microbiol, 2001,9(10):472-474. |
[8] | Ramage HR, Connolly LE, Cox JS . Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genet, 2009,5(12):e1000767. |
[9] | Robson J, McKenzie JL, Cursons R , et al. The vapBC operon from Mycobacterium smegmatis is an autoregulated toxin-antitoxin module that controls growth via inhibition of translation. J Mol Biol, 2009,390(3):353-367. |
[10] | Frampton R, Aggio RB, Villas-Bôas SG , et al. Toxin-antitoxin systems of Mycobacterium smegmatis are essential for cell survival. J Biol Chem, 2012,287(8):5340-5356. |
[11] | Pandey DP, Gerdes K . Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res, 2005,33(3):966-976. |
[12] | van Kessel JC, Hatfull GF . Recombineering in Mycobacterium tuberculosis. Nat Methods, 2007,4(2):147-152. |
[13] | Stover CK, de la Cruz VF, Fuerst TR , et al. New use of BCG for recombinant vaccines. Nature, 1991,351(6326):456-460. |
[14] | Mao XJ, Yan MY, Zhu H , et al. Efficient and simple generation of multiple unmarked gene deletions in Mycobacterium smegmatis. Sci Rep, 2016,6:22922. |
[15] | Yan MY, Yan HQ, Ren GX , et al. CRISPR-Cas12a-Assisted Recombineering in Bacteria. Appl Environ Microbiol, 2017, 83(17).pii:e00947-17. |
[16] | Gebhard S, Tran SL, Cook GM . The Phn system of Mycobacterium smegmatis: a second high-affinity ABC-transporter for phosphate. Microbiology, 2006,152(Pt 11):3453-3465. |
[17] | Tandon H, Sharma A, Sandhya S , et al. Mycobacterium tuberculosis Rv0366c-Rv0367c encodes a non-canonical PezAT-like toxin-antitoxin pair. Sci Rep, 2019,9(1):1163. |
[18] | Bajaj RA, Arbing MA, Shin A , et al. Crystal structure of the toxin Msmeg_6760, the structural homolog of Mycobacterium tuberculosis Rv2035, a novel type Ⅱ toxin involved in the hypoxic response. Acta Crystallogr F Struct Biol Commun, 2016,72(Pt 12):863-869. |
[19] | Singh R, Barry CE, Boshoff HI . The three RelE homologs of Mycobacterium tuberculosis have individual, drug-specific effects on bacterial antibiotic tolerance. J Bacteriol, 2010,192(5):1279-1291. |
[20] | Overgaard M, Borch J, Jørgensen MG , et al. Messenger RNA interferase RelE controls relBE transcription by conditional cooperativity. Mol Microbiol, 2008,69(4):841-857. |
[21] | Nikolic N, Didara Z, Moll I . MazF activation promotes translational heterogeneity of the grcA mRNA in Escherichia coli populations. PeerJ, 2017,5:e3830. |
[22] | VanDrisse CM, Parks AR, Escalante-Semerena JC . SalmonellaA Toxin Involved in Persistence Regulates Its Activity by Acetylating Its Cognate Antitoxin, a Modification Reversed by CobB Sirtuin Deacetylase. MBio, 2017,8(3):00708-00717. |
[23] | Jurenas D, Van Melderen L, Garcia-Pino A . Mechanism of regulation and neutralization of the AtaR-AtaT toxin-antitoxin system. Nature chemical biology, 2019,15(3):285-294. |
[1] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[2] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[3] | Zhao Yue, Wang Haoran, Cheng Meijin, Wang Wei, Liang Ruixia, Huang Hairong. The evaluation of the smear-positive and Xpert-negative outcome as an early indicator of nontuberculous mycobacteria existence in clinical specimen [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 61-65. |
[4] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[5] | Wang Xiaomin, Chen Jinyun, Zeng Yuqin, Ma Quan, Kong Xingxing, Meng Jianzhou, Lu Shuihua. Interpretation of the third edition of WHO consolidated guidelines on tuberculosis: module 3: diagnosis: rapid diagnostics for tuberculosis detection [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1006-1022. |
[6] | Geng Zimei, Wang Chaohong, Long Sibo, Zheng Maike, Shi Yiheng, Sun Yong, Zhao Yan, Wang Guirong. Analysis of bacteriological positivity and rifampicin resistance in patients with severe pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1050-1055. |
[7] | Wang Fei, Hua Duo, Guo Jianjian, Liu Chang, Han Lu, Ren Yi. Characteristic analysis of non-tuberculous mycobacterial pulmonary disease patients in Wuhan area from 2021 to 2023 [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1069-1076. |
[8] | Palidanguli Abudureheman, Wang Senlu, Gulina Badeerhan, Wang Le, Zulikatiayi Abudula, Wang Xinqi, Maiwulajiang Yimamu, Wang Xijiang. Distribution of Mycobacterium tuberculosis genotypes in Kashgar region and their association with clinical characteristics of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1077-1082. |
[9] | Yang Liangzi, Zhang Peize, Lu Shuihua. Interpretation of World Health Organization’s Co-administration of Treatment for Drug-resistant Tuberculosis and Hepatitis C: 2024 Update [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 874-876. |
[10] | Yu Lan, Chen Shuangshuang, Wang Nenhan, Tian Lili, Zhao Yanfeng, Fan Ruifang, Liu Haican, Li Chuanyou, Dai Xiaowei. Consistency between phenotypic resistance to fluoroquinolones and genetic mutations in rifampicin resistant Mycobacterium tuberculosis strains [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 942-950. |
[11] | Ye Xinchun, Liu Saiduo, Cheng Fang, Jiang Xiangao, Ning Hongye, Wu Zhengxing, Zhou Yueying, Qiu Chaochao, Pan Ning, Shi Jichan. Risk factors of latent tuberculosis infection among close contacts of drug-resistant pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(5): 525-530. |
[12] | Bao Xundi, Liang Suo, Li Jun, Ye Qian, Wu Dandan, Wang Shu, LI Yue, Ding Yunsheng, Liu Jie. Analysis of Mycobacterium tuberculosis drug resistance monitoring in Anhui Province from 2016 to 2022 [J]. Chinese Journal of Antituberculosis, 2024, 46(5): 531-537. |
[13] | Yang Jing, Xiao Lijuan, Fang Tanwei. Development strategy and prospect of tuberculosis mRNA vaccines [J]. Chinese Journal of Antituberculosis, 2024, 46(5): 590-595. |
[14] | Cheng Mengli, Jiang Guanglu, Huo Fengmin, Xue Yi, Yu Xia. Evaluation of in vitro activity of fusidic acid against mycobacteria [J]. Chinese Journal of Antituberculosis, 2024, 46(4): 461-466. |
[15] | Pei Shaojun, Ou Xichao. Interpretation of the World Health Organization’s Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance (2nd Edition) [J]. Chinese Journal of Antituberculosis, 2024, 46(3): 260-266. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||