Chinese Journal of Antituberculosis ›› 2019, Vol. 41 ›› Issue (6): 609-615.doi: 10.3969/j.issn.1000-6621.2019.06.005
• Original Articles • Previous Articles Next Articles
Zhao-gang SUN(),Hong-jing ZHANG,Zi-hui LI,Qi SUN,Lin-na LYU,Li-ping PAN,Gilbert Sandy,Zong-de ZHANG,Shao-fa XU,Xia James(
)
Received:
2019-03-20
Online:
2019-06-10
Published:
2019-06-04
Contact:
Zhao-gang SUN,Xia James
E-mail:sunzg75@163.com;james.xia@genosensorcorp.com
Zhao-gang SUN,Hong-jing ZHANG,Zi-hui LI,Qi SUN,Lin-na LYU,Li-ping PAN,Gilbert Sandy,Zong-de ZHANG,Shao-fa XU,Xia James. Design of a next generation microsequencing gene microarray and preliminary study of its effect on drug resistance detection[J]. Chinese Journal of Antituberculosis, 2019, 41(6): 609-615. doi: 10.3969/j.issn.1000-6621.2019.06.005
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2019.06.005
基因位点 | 碱基突变形式 | 菌株数(株) | 突变频率(%) |
---|---|---|---|
inhA基因 | |||
-8(T) | C | 6 | 5.50 |
-15(C) | T | 24 | 22.02 |
katG基因 | |||
315(AGC) | ACC | 68 | 62.39 |
315(AGC) | AAC | 2 | 1.83 |
rrs基因 | |||
1401(A) | G | 14 | 12.84 |
1402(C) | T | 2 | 1.83 |
eis基因 | |||
-10(G) | A | 3 | 2.75 |
-14(C)a | T | 1 | 0.92 |
-37(G) | T | 2 | 1.83 |
rpoB基因 | |||
511(CTG) | CCG | 4 | 3.67 |
513(CAA) | AAA | 1 | 0.92 |
516(GAC) | GTC | 5 | 4.59 |
526(CAC) | CTC | 5 | 4.59 |
526(CAC) | TAC | 6 | 5.50 |
526(CAC) | GAC | 4 | 3.67 |
526(CAC) | CGC | 4 | 3.67 |
531(TCG) | TAC | 1 | 0.92 |
531(TCG) | TGG | 4 | 3.67 |
531(TCG) | TTG | 63 | 57.80 |
rpsL基因 | |||
43(AAG) | AGG | 37 | 33.94 |
88(AAG) | AGG | 16 | 14.68 |
88(AAG) | CAG | 2 | 1.83 |
gyrA基因 | |||
90(GCG) | GTG | 18 | 16.51 |
91(TCG) | CCG | 4 | 3.67 |
94(GAC)a | AAC | 5 | 4.59 |
94(GAC) | CAC | 2 | 1.83 |
94(GAC) | GCC | 18 | 16.51 |
94(GAC) | GGC | 34 | 31.19 |
94(GAC) | TAC | 2 | 1.83 |
94(GAC)a | TTC | 2 | 1.83 |
embB基因 | |||
306(ATG) | ATA | 13 | 11.93 |
306(ATG) | ATC | 2 | 1.83 |
基因位点 | 碱基突变形式 | 菌株数(株) | 突变频率(%) |
306(ATG) | ATT | 1 | 0.92 |
306(ATG) | CTG | 1 | 0.92 |
306(ATG) | GTA | 35 | 32.11 |
306(ATG)a | GTC | 2 | 1.83 |
306(ATG) | GTG | 36 | 33.03 |
306(ATG)a | TTA | 1 | 0.92 |
306(ATG) | TTG | 1 | 0.92 |
406(GGC)a | AGC | 7 | 6.42 |
406(GGC) | GAC | 8 | 7.34 |
406(GGC) | GCC | 8 | 7.34 |
497(CAG) | CGG | 3 | 2.75 |
探针名称 | 检测结果 | 符合数 (株) | 符合率 (%) | 探针名称 | 检测结果 | 符合数 (株) | 符合率 (%) | 探针名称 | 检测结果 | 符合数 (株) | 符合率 (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
inhA_-8_S_T | 2株假阴性 | 107 | 98.17 | rpoB_1303-4_A_TC | 1株假阳性 | 108 | 99.08 | gyrA_269_S_T | 全部正确 | 109 | 100.00 |
inhA_-8_A_G | 全部正确 | 109 | 100.00 | rpoB_1304_A_A | 2株假阴性 | 107 | 98.17 | gyrA_271_A_G_2nd | 2株假阴性 | 107 | 98.17 |
inhA_-15_A_A | 1株假阴性, 2株假阳性 | 106 | 97.25 | rpoB_1304_A_Ca | 全部正确 | 109 | 100.00 | gyrA_280-1_S_CA | 全部正确 | 109 | 100.00 |
katG_944_S_A | 全部正确 | 109 | 100.00 | rpoB_1304_A_Ga | 全部正确 | 109 | 100.00 | gyrA_280-1_S_TA | 全部正确 | 109 | 100.00 |
katG_944_S_C | 2株假阴性, 3株假阳性 | 104 | 95.41 | rpoB_1333-4_A_GGa | 全部正确 | 109 | 100.00 | gyrA_280-1_S_GC | 全部正确 | 109 | 100.00 |
katG_944-5_A_TCa | 全部正确 | 109 | 100.00 | rpoB_1333-4_A_TAa | 1株假阳性 | 108 | 99.08 | gyrA_280-1_S_GG | 全部正确 | 109 | 100.00 |
katG_945_A_Ca | 全部正确 | 109 | 100.00 | rpoB_1333-4_A_TC | 1株假阴性 | 108 | 99.08 | embB_916-8_A_CAT | 3株假阴性, 31株假阳性 | 75 | 68.81 |
katG_945_A_Ta | 全部正确 | 109 | 100.00 | rpoB_1333-4_S_CA | 1株假阴性 | 108 | 99.08 | embB_916-8_S_GTA | 全部正确 | 109 | 100.00 |
rrs1401_S_A | 全部正确 | 109 | 100.00 | rpoB_1334_A_A | 全部正确 | 109 | 100.00 | embB_916-8_S_CTG | 全部正确 | 109 | 100.00 |
rrs1401_S_G | 全部正确 | 109 | 100.00 | rpoB_1348-50_S_TAGa | 全部正确 | 109 | 100.00 | embB_916-8_S_ATA | 2株检测 假阴性 | 107 | 98.17 |
rrs1401_S_Ta | 全部正确 | 109 | 100.00 | rpoB_1348-50_S_TAC | 全部正确 | 109 | 100.00 | embB_916-8_S_ATT | 1株检测 假阴性 | 108 | 99.08 |
rrs1402_A_G | 1株假阳性 | 108 | 99.08 | rpoB_1348-50_A_CGA | 3株假阴性 | 106 | 97.25 | embB_916-8_S_ATC | 1株检测 假阴性 | 108 | 99.08 |
rrs1401_1402_S_AT | 全部正确 | 109 | 100.00 | rpoB_1348-50_A_AGAa | 全部正确 | 109 | 100.00 | embB_916-8_S_GTG | 2株假阴性, 3株假阳性 | 104 | 95.41 |
探针名称 | 检测结果 | 符合数 (株) | 符合率 (%) | 探针名称 | 检测结果 | 符合数 (株) | 符合率 (%) | 探针名称 | 检测结果 | 符合数 (株) | 符合率 (%) |
rrs1484_S_Ta | 全部正确 | 109 | 100.00 | rpoB_1348-50_S_TGG | 全部正确 | 109 | 100.00 | embB_916-8_S_TTG | 1株检测 假阴性 | 108 | 99.08 |
rrs1484_A_Ca | 全部正确 | 109 | 100.00 | rpoB_1348-50_S_TTG | 1株假阳性, 1株假阴性 | 107 | 98.17 | embB_1216-8_A_TCG | 全部正确 | 109 | 100.00 |
eis_-10_S_G | 1株未检出 | 108 | 99.08 | rpoB_1355_A_A_a | 全部正确 | 109 | 100.00 | embB_1216-8_A_GCC | 1株检测 假阳性 | 108 | 99.08 |
eis_-37_A_C | 全部正确 | 109 | 100.00 | rpsL_128_A_C | 2株假阴性 | 107 | 98.17 | embB_1216-8_A_GGC | 1株假阴性, 4株错误 | 104 | 95.41 |
rpoB_1289_S_C | 全部正确 | 109 | 100.00 | rpsL_128_S_A | 全部正确 | 109 | 100.00 | embB_1216-8_A_GTC | 5株假阴性 | 104 | 95.41 |
rpoB_1289_S_T | 全部正确 | 109 | 100.00 | rpsL_128_S_Ca | 全部正确 | 109 | 100.00 | embB_1489-90_S_AA | 全部正确 | 109 | 100.00 |
rpoB_1294-5_S_AA | 全部正确 | 109 | 100.00 | rpsL_262-3_S_AA | 全部正确 | 109 | 100.00 | embB_1489-90_S_CA | 17株假阴性 | 92 | 84.40 |
rpoB_1294-5_S_CA | 全部正确 | 109 | 100.00 | rpsL_262-3_S_ACa | 全部正确 | 109 | 100.00 | embB_1489-90_S_CG | 1株检测 假阴性 | 108 | 99.08 |
rpoB_1294-5_S_CG | 全部正确 | 109 | 100.00 | rpsL_262-3_S_AG | 全部正确 | 109 | 100.00 | ||||
rpoB_1303-4_A_TA | 全部正确 | 109 | 100.00 | rpsL_262-3_S_CA | 全部正确 | 109 | 100.00 |
基因芯片 检测 | 基因测序 | 敏感度 (%) | 特异度 (%) | 阳性预测 值(%) | 阴性预测 值(%) | 一致率 (%) | Kappa值 | |
---|---|---|---|---|---|---|---|---|
突变(株) | 未突变(株) | |||||||
embB基因 | 64.21 (53.66~3.60) | 92.86 (64.17~99.63) | 98.39 (90.17~99.92) | 27.66 (16.09~42.87) | 67.89 (58.62~75.94) | 0.29 | ||
突变 | 61 | 1 | ||||||
未突变 | 34 | 13 | ||||||
gyrA基因 | 80.00 (44.22~96.46) | 100.00 (95.35~100.00) | 100.00 (59.77~100.00) | 98.02 (92.34~99.66) | 98.17 (93.15~99.90) | 0.88 | ||
突变 | 8 | 0 | ||||||
未突变 | 2 | 99 | ||||||
inhA基因 | 95.83 (76.88~99.78) | 97.65 (90.96~99.59) | 92.00 (72.5~98.60) | 98.81 (92.63~99.94) | 97.25 (91.87~99.41) | 0.92 | ||
突变 | 23 | 2 | ||||||
未突变 | 1 | 83 | ||||||
katG基因 | 98.55 (91.11~99.92) | 87.50 (72.40~95.31) | 93.15 (84.07~97.45) | 97.22 (83.80~99.85) | 94.50 (88.27~97.69) | 0.88 | ||
突变 | 68 | 5 | ||||||
未突变 | 1 | 35 | ||||||
rpoB基因 | 92.63 (84.91~96.73) | 85.71 (56.15~97.49) | 97.78 (91.44~99.61) | 63.16 (38.63~82.77) | 91.74 (84.87~95.78) | 0.68 | ||
突变 | 88 | 2 | ||||||
未突变 | 7 | 12 | ||||||
rpsL基因 | 93.85 (84.21~98.01) | 63.64 (47.74~77.17) | 79.22 (68.17~87.31) | 87.50 (70.07~95.92) | 81.65 (73.27~87.87) | 0.60 | ||
突变 | 61 | 16 | ||||||
未突变 | 4 | 28 | ||||||
eis基因 | 75.00 (21.94~98.68) | 100.00 (95.60~100.00) | 100.00 (31.00~100.00) | 99.06 (94.10~99.95) | 99.08 (94.48~99.99) | 0.85 | ||
突变 | 3 | 0 | ||||||
未突变 | 1 | 105 | ||||||
rrs基因 | 94.44 (70.63~99.71) | 98.90 (93.17~99.94) | 94.44 (70.63~99.71) | 98.90 (93.17~99.94) | 98.17 (93.15~99.90) | 0.93 | ||
突变 | 17 | 1 | ||||||
未突变 | 1 | 90 |
[1] | World Health Organization . Global tuberculosis report 2015. Geneva: World Health Organization, 2015. |
[2] |
Aragón LM, Navarro F, Heiser V , et al. Rapid detection of specific gene mutations associated with isoniazid or rifampicin resistance in Mycobacterium tuberculosis clinical isolates using non-fluorescent low-density DNA microarrays. J Antimicrob Chemother, 2006,57(5):825-831.
doi: 10.1093/jac/dkl058 URL |
[3] |
Park H, Song EJ, Song ES , et al. Comparison of a conventional antimicrobial susceptibility assay to an oligonucleotide chip system for detection of drug resistance in Mycobacterium tuberculosis isolates. J Clin Microbiol, 2006,44(5):1619-1624.
doi: 10.1128/JCM.44.5.1619-1624.2006 URL |
[4] | Linger Y, Kukhtin A, Golova J , et al. Demonstrating a multi-drug resistant Mycobacterium tuberculosis amplification microarray. J Vis Exp, 2014, ( 86):51256. |
[5] | 崔振玲, 景奉香, 胡忠义 , 等. 基因芯片检测结核分枝杆菌利福平和异烟肼耐药性研究. 中华结核和呼吸杂志, 2004,27(7):439-441. |
[6] | 赵雁林, 刘志敏 . 结核病实验室标准化操作与网络建设. 北京: 人民卫生出版社, 2013. |
[7] | 李自慧, 潘丽萍, 孙琦 , 等. 结核分枝杆菌耐药相关基因扩增多重PCR体系的建立与评估. 中国防痨杂志, 2017,39(8):793-798. |
[8] |
Cazabon D, Pande T, Kik S , et al. Market penetration of Xpert MTB/RIF in high tuberculosis burden countries: A trend analysis from 2014—2016. Gates Open Res, 2018,2:35.
doi: 10.12688/gatesopenres URL |
[9] | 国家市场监督管理总局, 中国国家标准化管理委员会 . GB/T 36136—2018 结核分枝杆菌耐药基因芯片检测基本要求. 2018 -05-14. |
[10] |
Xu Y, Zhang Z, Sun Z . Drug resistance to Mycobacterium tuberculosis: from the traditional Chinese view to modern systems biology. Crit Rev Microbiol, 2015,41(3):399-410.
doi: 10.3109/1040841X.2013.860948 URL |
[11] |
Slany M, Pavlik I . Molecular detection of nontuberculous mycobacteria: advantages and limits of a broad-range sequencing approach. J Mol Microbiol Biotechnol, 2012,22(4):268-276.
doi: 10.1159/000342517 URL |
[12] |
Turenne CY, Tschetter L, Wolfe J , et al. Necessity of quality-controlled 16S rRNA gene sequence databases: identifying nontuberculous Mycobacterium species. J Clin Microbiol, 2001,39(10):3637-3648.
doi: 10.1128/JCM.39.10.3638-3648.2001 URL |
[13] |
Harmsen D, Dostal S, Roth A , et al. RIDOM: comprehensive and public sequence database for identification of Mycobacterium species. BMC Infect Dis, 2003,3:26.
doi: 10.1186/1471-2334-3-26 URL |
[14] | 柳正卫, 吴蓓蓓, 郑琳 , 等. 微阵列芯片技术应用于分枝杆菌菌种鉴定的研究. 浙江预防医学, 2013,25(8):1-4. |
[15] | 潘建华, 石国民, 彭雪峰 , 等. 长沙地区2012—2017年非结核分枝杆菌流行状况分析. 国际检验医学杂志, 2018,39(20):2496-2498. |
[16] | 王玉红, 杨帆, 王智慧 , 等. 耐药基因检测在初次复治肺结核患者中的应用价值. 解放军医药杂志, 2017,29(5):83-85. |
[17] | 刘建坤, 王洪武, 陈刚 , 等. 基因芯片技术在煤工尘肺合并肺结核中的应用价值. 临床肺科杂志, 2017,22(1):29-31. |
[18] | 王桂荣, 黄海荣 . 分子检测技术诊断骨关节结核及其耐药性的研究进展. 中国防痨杂志, 2016,38(8):674-677. |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||