Chinese Journal of Antituberculosis ›› 2025, Vol. 47 ›› Issue (9): 1093-1104.doi: 10.19982/j.issn.1000-6621.20250234
• Guideline·Standard·Consensus • Previous Articles Next Articles
Imaging Professional Branch of Chinese Antituberculosis Association , Society of Tuberculosis, Chinese Medical Association , Standardization Professional Branch of Chinese Antituberculosis Association , Tuberculosis Control Professional Branch of Chinese Antituberculosis Association
Received:
2025-05-29
Online:
2025-09-10
Published:
2025-08-27
Supported by:
CLC Number:
Imaging Professional Branch of Chinese Antituberculosis Association , Society of Tuberculosis, Chinese Medical Association , Standardization Professional Branch of Chinese Antituberculosis Association , Tuberculosis Control Professional Branch of Chinese Antituberculosis Association . Expert consensus on the application of artificial intelligence assisted image reading technology in the detection of pulmonary tuberculosis patients in chest imaging examination[J]. Chinese Journal of Antituberculosis, 2025, 47(9): 1093-1104. doi: 10.19982/j.issn.1000-6621.20250234
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20250234
[1] | Hwang EJ, Jeong WG, David PM, et al. AI for detection of tuberculosis: implications for global health. Radiol Artif Intell, 2024, 6(2):e230327. doi:10.1148/ryai.230327. |
[2] | World Health Organization. Chest radiography in tuberculosis detection: summary of current WHO recommendations and guidance on programmatic approaches. Geneva: World Health Organization, 2016. |
[3] | World Health Organization. WHO consolidated guidelines on tuberculosis: module 2: screening: systematic screening for tuberculosis disease. Geneva: World Health Organization, 2021. |
[4] | Stop TB Partnership and FIND. AI products for tuberculosis healthcare[EB/OL].[2025-04-06]. https://www.ai4hlth.org/products/. |
[5] | Qin ZZ, Van der Walt M, Moyo S, et al. Computer-aided detection of tuberculosis from chest radiographs in a tuberculosis prevalence survey in South Africa: external validation and modelled impacts of commercially available artificial intelligence software. Lancet Digit Health, 2024, 6(9):e605-e613. doi:10.1016/S2589-7500(24)00118-3. |
[6] | 国家疾病预防控制局, 国家卫生健康委员会, 国家发展和改革委员会, 等. 关于印发《全国结核病防治规划(2024—2030年)》的通知[EB/OL].(2024-11-28)[2025-03-28]. https://www.gov.cn/zhengce/zhengceku/202412/content_6991217.htm. |
[7] | 李多, 吕平欣. 推动人工智能技术在肺结核影像领域的发展和运用. 中国防痨杂志, 2024, 46(3):253-259. doi:10.19982/j.issn.1000-6621.20240013. |
[8] |
Elliott A, Pirruccello JP. Machine learning-based markers for CAD. Lancet, 2023, 402(10397):182-183. doi:10.1016/S0140-6736(23)01061-9.
pmid: 37453747 |
[9] | Chan HP, Hadjiiski LM, Samala RK. Computer-aided diagnosis in the era of deep learning. Med Phys, 2020, 47(5):e218-e227. doi:10.1002/mp.13764. |
[10] |
Takahashi R, Kajikawa Y. Computer-aided diagnosis: a survey with bibliometric analysis. Int J Med Inform, 2017, 101:58-67. doi:10.1016/j.ijmedinf.2017.02.004.
pmid: 28347448 |
[11] | Zhang L, Weng TP, Wang HY, et al. Patient pathway analysis of tuberculosis diagnostic delay: a multicentre retrospective cohort study in China. Clin Microbiol Infect, 2021, 27(7): 1000-1006. doi:10.1016/j.cmi.2020.12.031. |
[12] | 国家呼吸内科医疗质量控制中心, 中华医学会结核病学分会, 中国防痨协会结核病控制专业分会, 等. 综合医疗机构肺结核早期发现临床实践指南. 结核与肺部疾病杂志, 2024, 5(1): 1-14. doi:10.19982/j.issn.1000-6621.20230428. |
[13] | 王艳, 洪创跃, 房宏霞, 等. 综合医疗机构呼吸科住院患者结核病筛查的研究. 中华结核和呼吸杂志, 2022, 45(12):1209-1213. doi:10.3760/cma.j.cn112147-20220720-00613. |
[14] | Yang Y, Xia L, Liu P, et al. A prospective multicenter clinical research study validating the effectiveness and safety of a chest X-ray-based pulmonary tuberculosis screening software JF CXR-1 built on a convolutional neural network algorithm. Front Med (Lausanne), 2023, 10:1195451. doi:10.3389/fmed.2023.1195451. |
[15] | Qin ZZ, Ahmed S, Sarker MS, et al. Tuberculosis detection from chest X-rays for triaging in a high tuberculosis-burden setting: an evaluation of five artificial intelligence algorithms. Lancet Digit Health, 2021, 3: e543-e554. doi:10.1016/S2589-7500(21)00116-3. |
[16] |
Nabulsi Z, Sellergren A, Jamshy S, et al. Deep learning for distinguishing normal versus abnormal chest radiographs and generalization to two unseen diseases tuberculosis and COVID-19. Sci Rep, 2021, 11(1):15523. doi:10.1038/s41598-021-93967-2.
pmid: 34471144 |
[17] | 许杰, 王小义, 夏丽, 等. 基于人工智能的远程肺结核影像辅助诊断应用研究. 中国数字医学, 2021, 16(8):98-100. doi:10.3969/j.issn.1673-7571.2021.08.023. |
[18] | Choi SY, Choi A, Baek SE, et al. Effect of multimodal diagnostic approach using deep learning-based automated detection algorithm for active pulmonary tuberculosis. Sci Rep, 2023, 13(1):19794. doi:10.1038/s41598-023-47146-0. |
[19] | Nijiati M, Zhang Z, Abulizi A, et al. Deep learning assistance for tuberculosis diagnosis with chest radiography in low-resource settings. J Xray Sci Technol, 2021, 29(5):785-796. doi:10.3233/XST-210894. |
[20] | 熊章龙, 苏东红, 莫启章, 等. 广西基层医疗卫生机构卫生技术人员职业能力现状及岗位能力需求的调查与思考. 养生保健指南, 2021(36):287-288. |
[21] | 陈曦, 贺晓新, 高志东, 等. 北京市区(县)社区结核病防治医务人员工作现状调查结果评价. 中国防痨杂志, 2015, 37(2):183-188. doi:10.3969/j.issn.1000-6621.2015.02.013. |
[22] | 梁胜翔. 我国西部地区基层医疗卫生机构基本公共卫生服务人员核心能力建设研究. 重庆:中国人民解放军陆军军医大学, 2020. doi:10.27001/d.cnki.gtjyu.2020.000024. |
[23] | Innes AL, Martinez A, Gao X, et al. Computer-aided detection for chest radiography to improve the quality of tuberculosis diagnosis in vietnam’s district health facilities: an implementation study. Trop Med Infect Dis, 2023, 8(11):488. doi:10.3390/tropicalmed8110488. |
[24] | Tavaziva G, Harris M, Abidi SK, et al. Chest X-ray analysis with deep learning-based software as a triage test for pulmonary tuberculosis: an individual patient data meta-analysis of diagnostic accuracy. Clin Infect Dis, 2022, 74(8):1390-1400. doi:10.1093/cid/ciab639. |
[25] | 中华人民共和国医师法[EB/OL]. (2021-08-20)[2025-03-28]. http://www.npc.gov.cn/npc/c2/c30834/202108/t20210820_313104.html. |
[26] | Park J, Hwang EJ, Lee JH, et al. Identification of active pulmonary tuberculosis among patients with positive interferon-gamma release assay results: value of a deep learning-based computer-aided detection system in different scenarios of implementation. J Thorac Imaging, 2023, 38(3):145-153. doi:10.1097/RTI.0000000000000691. |
[27] | Mezrich JL. Is artificial intelligence (ai) a pipe dream? why legal issues present significant hurdles to AI autonomy. AJR Am J Roentgenol, 2022, 219(1):152-156. doi:10.2214/AJR.21.27224. |
[28] |
Jaremko JL, Azar M, Bromwich R, et al. Canadian association of radiologists white paper on ethical and legal issues related to artificial intelligence in radiology. Can Assoc Radiol J, 2019, 70(2):107-118. doi:10.1016/j.carj.2019.03.001.
pmid: 30962048 |
[29] |
Hwang EJ, Goo JM, Yoon SH, et al. Use of artificial intelligence-based software as medical devices for chest radiography: a position paper from the Korean society of thoracic radiology. Korean J Radiol, 2021, 22(11):1743-1748. doi:10.3348/kjr.2021.0544.
pmid: 34564966 |
[30] | Yuen CM, Puma D, Millones AK, et al. Identifying barriers and facilitators to implementation of community-based tuberculosis active case finding with mobile X-ray units in Lima, Peru: a RE-AIM evaluation. BMJ Open, 2021, 11(7): e050314. doi:10.1136/bmjopen-2021-050314. |
[31] | Okada K, Yamada N, Takayanagi K, et al. Applicability of artificial intelligence-based computer-aided detection (AI-CAD) for pulmonary tuberculosis to community-based active case finding. Trop Med Health, 2024, 52(1): 2. doi:10.1186/s41182-023-00560-6. |
[32] |
Dakulala P, Kal M, Honjepari A, et al. Evaluation of a population-wide, systematic screening initiative for tuberculosis on Daru island, Western Province, Papua New Guinea. BMC Public Health, 2024, 24(1): 959. doi:10.1186/s12889-024-17918-y.
pmid: 38575948 |
[33] | 王晓林, 王晓炜, 雷娟, 等. 宁夏回族自治区肺结核人工智能影像筛查系统的应用. 中国数字医学, 2020, 15(4): 39-41. doi:10.3969/j.issn.1673-7571.2020.04.012. |
[34] |
Codlin AJ, Dao TP, Vo LNQ, et al. Independent evaluation of 12 artificial intelligence solutions for the detection of tuberculosis. Sci Rep, 2021, 11(1): 23895. doi:10.1038/s41598-021-03265-0.
pmid: 34903808 |
[35] |
Wali A, Safdar N, Manair R, et al. Early TB case detection by community-based mobile X-ray screening and Xpert testing in Balochistan. Public Health Action, 2021, 11(4): 174-179. doi:10.5588/pha.21.0050.
pmid: 34956844 |
[36] | Velen K, Sathar F, Hoffmann CJ, et al. Digital chest X-ray with computer-aided detection for tuberculosis screening within correctional facilities. Ann Ame Thoracic Society, 2022, 19(8): 1313-1319. doi:10.1513/AnnalsATS.202103-380OC. |
[37] |
Jordan AM, Podewils LJ, Castro KG, et al. Prevalence and risk factors of tuberculosis disease in South African correctional facilities in 2015. Int J Tuberc Lung Dis, 2019, 23(11):1198-1204. doi:10.5588/ijtld.18.0782.
pmid: 31718756 |
[38] | World Health Organization, UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases. Determining the local calibration of computer-assisted detection (CAD) thresholds and other parameters: a toolkit to support the effective use of CAD for TB screening. Geneva: World Health Organization, 2021. |
[39] | Vanobberghen F, Keter AK, Jacobs BKM, et al. Computer-aided detection thresholds for digital chest radiography interpretation in tuberculosis diagnostic algorithms. ERJ Open Res, 2024, 10(1): 00508-02023. doi:10.1183/23120541.00508-2023. |
[40] | Liao Q, Feng H, Li Y, et al. Evaluation of an artificial intelligence (AI) system to detect tuberculosis on chest X-ray at a pilot active screening project in Guangdong, China in 2019. J Xray Sci Technol, 2022, 30(2):221-230. doi:10.3233/XST-211019. |
[41] |
Fehr J, Konigorski S, Olivier S, et al. Computer-aided interpretation of chest radiography reveals the spectrum of tuberculosis in rural South Africa. NPJ Digit Med, 2021, 4(1): 106. doi:10.1038/s41746-021-00471-y.
pmid: 34215836 |
[42] |
Koesoemadinata RC, Kranzer K, Livia R, et al. Computer-assisted chest radiography reading for tuberculosis screening in people living with diabetes mellitus. Int J Tuberc Lung Dis, 2018, 22(9): 1088-1094. doi:10.5588/ijtld.17.0827.
pmid: 30092877 |
[43] |
Habib SS, Rafiq S, Zaidi SMA, et al. Evaluation of computer aided detection of tuberculosis on chest radiography among people with diabetes in Karachi Pakistan. Sci Rep, 2020, 10(1): 6276. doi:10.1038/s41598-020-63084-7.
pmid: 32286389 |
[44] | Kagujje M, Kerkhoff AD, Nteeni M, et al. The performance of computer-aided detection digital chest X-ray reading technolo-gies for triage of active tuberculosis among persons with a history of previous tuberculosis. Clin Infect Dis, 2023, 76(3): e894-e901. doi:10.1093/cid/ciac679. |
[45] | Crowder R, Thangakunam B, Andama A, et al. Diagnostic accuracy of TB screening tests in a prospective multinational cohort: chest-X-ray with computer-aided detection, Xpert TB host response, and C-reactive protein. Clin Infect Dis, 2024, 7:ciae549. doi:10.1093/cid/ciae549. |
[46] | Scott AJ, Limbada M, Perumal T, et al. Integrating molecular and radiological screening tools during community-based active case-finding for tuberculosis and COVID-19 in southern Africa. Int J Infect Dis, 2024, 145:107081. doi:10.1016/j.ijid.2024.107081. |
[47] | Gelaw SM, Kik SV, Ruhwald M, et al. Diagnostic accuracy of three computer-aided detection systems for detecting pulmonary tuberculosis on chest radiography when used for screening: analysis of an international, multicenter migrants screening study. PLoS Glob Public Health, 2023, 3(7): e0000402. doi:10.1371/journal.pgph.0000402. |
[48] | Mungai B, Ong’angò J, Ku CC, et al. Accuracy of computer-aided chest X-ray in community-based tuberculosis screening: Lessons from the 2016 Kenya National Tuberculosis Prevalence Survey. PLoS Glob Public Health, 2022, 2(11): e0001272. doi:10.1371/journal.pgph.0001272. |
[49] | 王前, 何金戈, 李玉红, 等. 人工智能自动阅片技术用于HIV/AIDS人群结核病主动筛查效果的研究. 中国防痨杂志, 2021, 43(6): 557-561. doi:10.3969/j.issn.1000-6621.2021.06.007. |
[50] | Innes AL, Martinez A, Hoang GL, et al. Active case finding to detect symptomatic and subclinical pulmonary tuberculosis disease: implementation of computer-aided detection for chest radiography in Viet Nam. Western Pac Surveill Response J, 2024, 15(4):1-12. doi:10.5365/wpsar.2024.15.4.1118. |
[51] | Nijiati M, Zhou R, Damaola M, et al. Deep learning based CT images automatic analysis model for active/non-active pulmonary tuberculosis differential diagnosis. Front Mol Biosc, 2022, 9:1086047. doi:10.3389/fmolb.2022.1086047. |
[52] | Xu Z, Bagci U, Kubler A, et al. Computer-aided detection and quantification of cavitary tuberculosis from CT scans. Med Phys, 2013, 40(11):113701. doi:10.1118/1.4824979. |
[53] | Ma L, Wang Y, Guo L, et al. Developing and verifying automatic detection of active pulmonary tuberculosis from multi-slice spiral CT images based on deep learning. J Xray Sci Technol, 2020, 28(5):939-951. doi:10.3233/XST-200662. |
[54] | 巩盼, 李星宇, 来坤, 等. 基于定量CT检测浸润性肺结核病变的可行性研究. 临床放射学杂志, 2024, 43(4):567-573. doi:10.13437/j.cnki.jcr.2024.04.021. |
[55] | Nijiati M, Guo L, Abulizi A, et al. Deep learning and radiomics of longitudinal CT scans for early prediction of tuberculosis treatment outcomes. Eur J Radiol, 2023, 169:111180. doi:10.1016/j.ejrad.2023.111180. |
[56] | Yan C, Wang L, Lin J, et al. A fully automatic artificial intelligence-based CT image analysis system for accurate detection, diagnosis, and quantitative severity evaluation of pulmonary tuberculosis. Eur Radiol, 2022, 32(4):2188-2199. doi:10.1007/s00330-021-08365-z. |
[57] |
Li Y, Xu Z, LYU X, et al. Radiomics analysis of lung CT for multidrug resistance prediction in active tuberculosis: a multicentre study. Eur Radiol, 2023, 33(9):6308-6317. doi:10.1007/s00330-023-09589-x.
pmid: 37004571 |
[58] | Nijiati M, Guo L, Tuersun A, et al. Deep learning on longitudinal CT scans: automated prediction of treatment outcomes in hospitalized tuberculosis patients. iScience, 2023, 26(11):108326. doi:10.1016/j.isci.2023.108326. |
[59] | Li Y, Wang B, Wen L, et al. Machine learning and radiomics for the prediction of multidrug resistance in cavitary pulmonary tuberculosis: a multicentre study. Eur Radiol, 2023, 33(1):391-400. doi:10.1007/s00330-022-08997-9. |
[60] | 秦李祎, 吕平欣, 郭琳, 等. 基于CT图像的肺结核病灶治愈状态判定深度学习模型的建立. 中国防痨杂志, 2024, 46(3):272-278. doi:10.19982/j.issn.1000-6621.20230457. |
[61] | Zhang J, Huang T, He X, et al. Machine learning-based model assists in differentiating Mycobacterium avium complex pulmonary disease from pulmonary tuberculosis: a multicenter study[J/OL]. J Imaging Inform Med, (2025-04-01)[2025-05-01]. https://link.springer.com/article/10.1007/s10278-025-01486-7. doi:10.1007/s10278-025-01486-7. |
[62] | 张嘉诚, 黄婷婷, 何旭, 等. 基于CT特征和机器学习的鸟-胞内分枝杆菌复合群肺病和初治肺结核鉴别诊断模型的构建与验证. 中国医学影像学杂志, 2024, 32(10):1007-1013,1039. doi:10.3969/j.issn.1005-5185.2024.10.007. |
[63] | Zhang K, Qi S, Cai J, et al. Content-based image retrieval with a Convolutional Siamese Neural Network: Distinguishing lung cancer and tuberculosis in CT images. Comput Biol Med, 2022, 140:105096. doi:10.1016/j.compbiomed.2021.105096. |
[1] | Abuduresuli Tu’ersun, Abudukeyoumujiang Abulizi, Patiman Maimaiti, Huang Chencui, Shen Lingyan, Mayidili Nijiati. Predicting pulmonary tuberculosis treatment outcomes using longitudinal chest CT radiomics and deep learning [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1044-1052. |
[2] | Jiao Jiahuan, Sun Changfeng, Wu Gang, Huang Fuli, Sheng Yunjian. The value of machine learning algorithm-based diagnostic models in tuberculous pleural effusion [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1053-1061. |
[3] | Zhu Qingdong, Zhao Chunyan, Xie Zhouhua, Song Shulin, Song Chang. Research progress on the application of artificial intelligence-based CT radiomics in the diagnosis and treatment response monitoring of tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1068-1076. |
[4] | Li Wenhan, Yang Jing, Li Chunhua. Research progress of artificial intelligence in pulmonary tuberculosis imaging diagnosis and drug resistance prediction [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1098-1103. |
[5] | Qin Liyi, Lyu Pingxin, Guo Lin, Qian Lingjun, Xiao Qian, Yang Yang, Shang Yuanyuan, Jia Junnan, Chu Naihui, Liu Yuanming, Li Weimin. Deep learning to determine the healing status of pulmonary tuberculosis lesions on CT images [J]. Chinese Journal of Antituberculosis, 2024, 46(3): 272-278. |
[6] | Liu Xueyan, Wang Fang, Li Chunhua, Tang Guangxiao, Zheng Jiaofeng, Wang Huiqiu, Li Yurui, Wang Jia’nan, Shu Weiqiang, Lyu Shengxiu. Construction and evaluation of a CT-based deep learning model for the auxiliary diagnosis of secondary tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(3): 279-287. |
[7] | Gao Shan, Nie Wenjuan, Hou Dailun, Chu Naihui. Research progress on imaging manifestations of nontuberculosis mycobacterial pulmonary and application of new artificial intelligence technology [J]. Chinese Journal of Antituberculosis, 2024, 46(3): 362-366. |
[8] | Li Wenting, Wang Li, Fang Yong, Gu Jin, Sha Wei. The value of CT-based deep learning models in differentiating nontuberculous mycobacterial lung disease from pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(10): 1236-1242. |
[9] | WU Jian, HOU Dai-lun. Application of deep learning in pulmonary tuberculosis imaging diagnosis [J]. Chinese Journal of Antituberculosis, 2022, 44(1): 91-94. |
[10] | WANG Qian, HE Jin-ge, LI Yu-hong, CHEN Ming-ting, ZHOU Lin. A study on the effect of artificial intelligence automatic film reading technology in active tuberculosis screening of HIV/AIDS population [J]. Chinese Journal of Antituberculosis, 2021, 43(6): 557-561. |
[11] | Academic Working Committee of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis . Expert consensus of clinical application of fixed-dose combination formulations [J]. Chinese Journal of Antituberculosis, 2020, 42(9): 885-893. |
[12] | Clinical Research Center for Infectious Disease, the Third People’s Hospital of Shenzhen, Editorial Board of Chinese Journal of Antituberculosis National. Expert consensus on a standard of activity judgment of pulmonary tuberculosis and its clinical implementation [J]. Chinese Journal of Antituberculosis, 2020, 42(4): 301-307. |
[13] | Pan CAO,Fei WANG,Zhe LIU,Jin-cheng LIU,Kuang-li LIANG,Ji-xin YUAN,Feng CHI,Ye-dong HUANG,Jian YANG. Value of FPN in pulmonary tuberculosis screening on the thoracic radiography images [J]. Chinese Journal of Antituberculosis, 2019, 41(3): 288-293. |
[14] | LUO Xing-neng, ZHONG Li, ZHOU Wen-jie, LI Ting-rong, LIU Hong-hong. Analysis of chest X-ray of susceptible population in Shapingba District in Chongqing in Year 2015 [J]. Chinese Journal of Antituberculosis, 2017, 39(3): 289-292. |
[15] | PENG Hong, XU Wei-guo, ZHAI Xiang-jun, ZHU Li-guo, ZHU Ye-fei, JIANG Wei, ZHU Tao, JI Ming, LU Wei, JIANG Jie, ZHU Feng-cai. Assessment of X-ray screening for active case finding in the general rural population of Jiangsu province [J]. Chinese Journal of Antituberculosis, 2014, 36(12): 1029-1035. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||