Chinese Journal of Antituberculosis ›› 2025, Vol. 47 ›› Issue (8): 1077-1084.doi: 10.19982/j.issn.1000-6621.20250091
• Review Articles • Previous Articles Next Articles
Zhu Qingyu1,2, Liu Jiayun3, Long Yin1,2()
Received:
2025-03-07
Online:
2025-08-10
Published:
2025-08-01
Contact:
Long Yin,Email: longyin@fmmu.edu.cn
Supported by:
CLC Number:
Zhu Qingyu, Liu Jiayun, Long Yin. Advances in the application of extracellular vesicles and the diagnosis of tuberculosis[J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1077-1084. doi: 10.19982/j.issn.1000-6621.20250091
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20250091
研究对象 | 标本类型 | ncRNA检测 | ncRNA | 研究结果 | 参考文献 |
---|---|---|---|---|---|
结核病与健康人 | 血浆外泌体 | 高通量测序、 RT-qPCR | miR-185-5p | 在结核病患者血浆外泌体中的水平显著升高 | Kaushik 等[ |
结核病与健康人 | 血浆外泌体 | 生物信息学、 RT-qPCR | miR-26a-5p、miR-151a-3p | 结核病患者血浆外泌体来源miR-26a-5p表达水平降低,miR151a-3p表达水平升高 | 冯真等[ |
活动性结核病和健康人 | 血浆外泌体 | GEO数据集和 NONCODE数据 库的综合分析 | NONHSAT101518.2、 NONHSAT067134.2、 NONHSAT148822.1、 NONHSAT078957.2 | 4种lncRNA明显下调 | Fang等[ |
活动性结核病和健康人 | 血浆外泌体 | Small-RNA 转录组分析 | miR-766-3p、miR-1283、 miR-125a-5p、miR-376c-3p | 可能作为结核病诊断的候选标志 | Cui等[ |
结核病、LTBI与健康人 | 血清外泌体 | Small RNA-seq | hsa-let-7e-5p、hsa-let-7d-5p、 hsa-miR-450a-5p、hsa-miR-140-5p;hsa-miR-1246、hsa-miR-2110、 hsa-miR-370-3P、hsa-miR-28-3p、hsa-miR-193b-5p | 特异性表达 | Lyu等[ |
活动性结核病、LTBI与健康人 | 血清外泌体 | 高通量测序、 RT-qPCR | 3个tRFs(tRF-56:75-Trp-CCA-4、tRF-1:22-chrM.Ser-GCT、 tRF-56:76Val-TAC-1-M2) | 活动性结核病患者和LTBI中tRFs表达水平存在差异 | Xi等[ |
活动性结核病、LTBI和健康人 | 血清外泌体 | RT-qPCR | miR-27a | 表达上调 | 郑甜等[ |
LTBI与健康人 | 血浆外泌体 | Small RNA-seq | hsa-miR-7850-5p、hsa-miR-1306-5p、 hsa-miR-363-5p、hsa-miR-374a-5p、 hsa-miR-4654、has-miR-6529-5p、 hsa-miR-140-5p | 在LTBI个体中特异性表达升高 | Cui等[ |
MDR-TB与健康人 | 血清EV | qPCR | miR-let7e-5p | 在MDR-TB中观察到miR-let-7e-5p上调 | Carranza 等[ |
MDR-TB | 血浆外泌体 | RT-qPCR | miR-346 | 血浆外泌体miR-346高表达与MDR-TB治疗结果不良高风险有关,有希望作为MDR-TB治疗结局预测的有用标志物 | 胡萍等[ |
结核病、TBM和健康人 | 血浆外泌体 | 微阵列分析、 qRT-PCR | miR-20a、miR-20b、miR-26a、 miR-106a、miR-191、miR-486 | 在结核病患者中存在差异表达 | Hu等[ |
HIV感染合并结核病患者与HIV感染 | 血浆外泌体 | RT-qPCR | miR-20a、miR-20b、miR-26a、 miR-106a、miR-191、miR-486 | 表达升高 | Jin等[ |
[1] | Freitag B, Sultanli A, Grilli M, et al. Clinically diagnosed tuberculosis and mortality in high burden settings: a systematic review and meta-analysis. EClinicalMedicine, 2025, 84: 103251. doi:10.1016/j.eclinm.2025.103251. |
[2] |
Huynh J, Donovan J, Phu NH, et al. Tuberculous meningitis: progress and remaining questions. Lancet Neurol, 2022, 21(5): 450-464. doi:10.1016/S1474-4422(21)00435-X.
pmid: 35429482 |
[3] |
Liu C, Lyon CJ, Bu Y, et al. Clinical Evaluation of a Blood Assay to Diagnose Paucibacillary Tuberculosis via Bacterial Antigens. Clin Chem, 2018, 64(5): 791-800. doi:10.1373/clinchem.2017.273698.
pmid: 29348166 |
[4] |
Abels ER, Breakefield XO. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. Cell Mol Neurobiol, 2016, 36(3): 301-312. doi:10.1007/s10571-016-0366-z.
pmid: 27053351 |
[5] | Rath P, Huang C, Wang T, et al. Genetic regulation of vesiculogenesis and immunomodulation in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A, 2013, 110(49): E4790-E4797. doi:10.1073/pnas.1320118110. |
[6] | White DW, Elliott SR, Odean E, et al. Pst/SenX3-RegX3 Regulates Membrane Vesicle Production Independently of ESX-5 Activity. Mbio, 2018, 9(3):e00778-18. doi:10.1128/mBio.00778-18. |
[7] | Simeone P, Bologna G, Lanuti P, et al. Extracellular Vesicles as Signaling Mediators and Disease Biomarkers across Biological Barriers. Int J Mol Sci, 2020, 21(7):2514. doi:10.3390/ijms21072514. |
[8] | Skotland T, Sagini K, Sandvig K, et al. An emerging focus on lipids in extracellular vesicles. Adv Drug Deliv Rev, 2020, 159:308-321. doi:10.1016/j.addr.2020.03.002. |
[9] | Li Y, Qian Y, Wang N, et al. The functions and applications of extracellular vesicles derived from Mycobacterium tuberculosis. Biomed Pharmacother, 2023, 168: 115767. doi:10.1016/j.biopha.2023.115767. |
[10] | Layre E. Trafficking of Mycobacterium tuberculosis Envelope Components and Release Within Extracellular Vesicles: Host-Pathogen Interactions Beyond the Wall. Front Immunol, 2020, 11: 1230. doi:10.3389/fimmu.2020.01230. |
[11] | Flores J, Cancino JC, Chavez-Galan L. Lipoarabinomannan as a Point-of-Care Assay for Diagnosis of Tuberculosis: How Far Are We to Use It?. Front Microbiol, 2021, 12: 638047. doi:10.3389/fmicb.2021.638047. |
[12] | Quinn CM, Kagimu E, Okirworth M, et al. Fujifilm SILVAMP TB LAM Assay on Cerebrospinal Fluid for the Detection of Tuberculous Meningitis in Adults With Human Immunodeficiency Virus. Clin Infect Dis, 2021, 73(9):e3428-e3434. doi:10.1093/cid/ciaa1910. |
[13] |
Huang Z, Huang H, Hu J, et al. A novel quantitative urine LAM antigen strip for point-of-care tuberculosis diagnosis in non-HIV adults. J Infect, 2024, 88(2): 194-198. doi:10.1016/j.jinf.2023.11.014.
pmid: 38036183 |
[14] | Lee J, Kim SH, Choi DS, et al. Proteomic analysis of extracellular vesicles derived from Mycobacterium tuberculosis. Proteomics, 2015, 15(19): 3331-3337. doi:10.1002/pmic.201500037. |
[15] | Schirmer S, Rauh L, Alebouyeh S, et al. Immunogenicity of Mycobacterial Extracellular Vesicles Isolated From Host-Related Conditions Informs About Tuberculosis Disease Status. Front Microbiol, 2022, 13: 907296. doi:10.3389/fmicb.2022.907296. |
[16] | Harding CV, Boom WH. Regulation of antigen presentation by Mycobacterium tuberculosis: a role for Toll-like receptors. Nat Rev Microbiol, 2010, 8(4): 296-307. doi:10.1038/nrmicro2321. |
[17] |
Palacios A, Sampedro L, Sevilla IA, et al. Mycobacterium tuberculosis extracellular vesicle-associated lipoprotein LpqH as a potential biomarker to distinguish paratuberculosis infection or vaccination from tuberculosis infection. Bmc Vet Res, 2019, 15(1):188. doi:10.1186/s12917-019-1941-6.
pmid: 31174546 |
[18] | A J, S S S, K S, et al. Extracellular vesicles in bacterial and fungal diseases-Pathogenesis to diagnostic biomarkers. Virulence, 2023, 14(1): 2180934. doi:10.1080/21505594.2023.2180934. |
[19] | Singh PP, Li L, Schorey JS. Exosomal RNA from Mycobacterium tuberculosis-Infected Cells Is Functional in Recipient Macrophages. Traffic, 2015, 16(6): 555-571. doi:10.1111/tra.12278. |
[20] |
Yuan Q, Chen H, Yang Y, et al. miR-18a promotes Mycobacterial survival in macrophages via inhibiting autophagy by down-regulation of ATM. J Cell Mol Med, 2020, 24(2): 2004-2012. doi:10.1111/jcmm.14899.
pmid: 31845528 |
[21] | Wang N, Yao Y, Qian Y, et al. Cargoes of exosomes function as potential biomarkers for Mycobacterium tuberculosis infection. Front Immunol, 2023, 14: 1254347. doi:10.3389/fimmu.2023.1254347. |
[22] | Kumar MA, Baba SK, Sadida HQ, et al. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct Target Ther, 2024, 9(1): 27. doi:10.1038/s41392-024-01735-1. |
[23] | Correia-Neves M, Nigou J, Mousavian Z, et al. Immunological hyporesponsiveness in tuberculosis: The role of mycobacterial glycolipids. Front Immunol, 2022, 13: 1035122. doi:10.1038/s41392-024-01735-1. |
[24] | Dahiya B, Khan A, Mor P, et al. Detection of lipoarabinomannan and CFP-10 (Rv3874) from urinary extracellular vesicles of tuberculosis patients by immuno-PCR. Pathog Dis, 2019, 77(5):ftz049. doi:10.1093/femspd/ftz049. |
[25] |
Flores LL, Steingart KR, Dendukuri N, et al. Systematic Review and Meta-Analysis of Antigen Detection Tests for the Diagnosis of Tuberculosis. Clin Vaccine Immunol, 2011, 18(10): 1616-1627. doi:10.1128/Cvi.05205-11.
pmid: 21832100 |
[26] | Correia-Neves M, Fröberg G, Korshun L, et al. Biomarkers for tuberculosis: the case for lipoarabinomannan. ERJ Open Res, 2019, 5(1):00115-2018. doi:10.1183/23120541.00115-2018. |
[27] |
Peter JG, Zijenah LS, Chanda D, et al. Effect on mortality of point-of-care, urine-based lipoarabinomannan testing to guide tuberculosis treatment initiation in HIV-positive hospital inpatients: a pragmatic, parallel-group, multicountry, open-label, randomised controlled trial. Lancet, 2016, 387(10024): 1187-1197. doi:10.1016/S0140-6736(15)01092-2.
pmid: 26970721 |
[28] | Yari S, Afrough P, Yari F, et al. A potent subset of glycoproteins as relevant candidates for vaccine and therapeutic target. Sci Rep, 2023, 13(1):22194. doi:10.1038/s41598-023-49665-2. |
[29] | Zhang M, Xie Y, Li S, et al. Proteomics Analysis of Exosomes From Patients With Active Tuberculosis Reveals Infection Profiles and Potential Biomarkers. Front Microbiol, 2022, 12: 800807. doi:10.3389/fmicb.2021.800807. |
[30] | Kruh-Garcia NA, Wolfe LM, Chaisson LH, et al. Detection of Mycobacterium tuberculosis peptides in the exosomes of patients with active and latent M.tuberculosis infection using MRM-MS. PLoS One, 2014, 9(7): e103811. doi:10.1371/journal.pone.0103811. |
[31] | Jiang Y, Yan L, Zhou B, et al. Identifying plasma exosome antigens as a potential diagnostic biomarker for tuberculosis disease. BMC Infect Dis, 2025, 25(1): 65. doi:10.1186/s12879-025-10474-9. |
[32] | Du Y, Xin HA, Cao XF, et al. Association Between Plasma Exosomes S100A9/C4BPA and Latent Tuberculosis Infection Treatment: Proteomic Analysis Based on a Randomized Controlled Study. Front Microbiol, 2022,13:934716. doi:10.3389/fmicb.2022.934716. |
[33] | 李伟, 吴佩佩, 钱晖, 等. 外泌体标志物及临床应用研究. 临床检验杂志, 2022, 40(12): 881-885. doi:10.13602/j.cnki.jcls.2022.12.01. |
[34] |
Prados-Rosales R, Baena A, Martinez LR, et al. Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice. J Clin Invest, 2011, 121(4): 1471-1483. doi:10.1172/JCI44261.
pmid: 21364279 |
[35] | 王楠, 吴建红, 李玉洁, 等. 外泌体作为诊断结核分枝杆菌感染的标志物研究. 生命科学研究, 2024, 28(1): 33-40. doi:10.16605/j.cnki.1007-7847.2023.04.0146. |
[36] | Kaushik AC, Wu Q, Lin L, et al. Exosomal ncRNAs profiling of mycobacterial infection identified miRNA-185-5p as a novel biomarker for tuberculosis. Brief Bioinform, 2021, 22(6):bbab210. doi:10.1093/bib/bbab210. |
[37] | 冯真, 张博, 邓思齐, 等. 血浆外泌体miR-26a-5p和miR-151a-3p在结核病中的表达及诊断价值. 安徽医科大学学报, 2022, 57(12): 1979-1984. doi:10.19405/j.cnki.issn1000-1492.2022.12.022. |
[38] | Fang Y, Zhao J, Wang X, et al. Identification of differentially expressed lncRNAs as potential plasma biomarkers for active tuberculosis. Tuberculosis, 2021, 128:102065. doi:10.1016/j.tube.2021.102065. |
[39] | Cui X, Zhang F, Meng H, et al. Transport of miR-766-3p to A549 cells by plasma-derived exosomes and its effect on intracellular survival of Mycobacterium tuberculosis by regulating NRAMP1 expression in A549 cells. Microbiol Res, 2025, 290: 127943. doi:10.1016/j.micres.2024.127943. |
[40] |
Lyu L, Zhang X, Li C, et al. Small RNA Profiles of Serum Exosomes Derived From Individuals With Latent and Active Tuberculosis. Front Microbiol, 2019, 10: 1174. doi:10.3389/fmicb.2019.01174.
pmid: 31191492 |
[41] | Xi X, Wang B, Zhang R, et al. Serum exosome tRFs as a promising biomarker for active tuberculosis and latent tuberculosis infection. J Microbiol Methods, 2024, 222: 106944. doi:10.1016/j.mimet.2024.106944. |
[42] | 郑甜, 王泉, 李树涛, 等. 血清外泌体miR-27a水平升高与肺结核耐药及不良结局的相关性. 中国热带医学, 2023, 23(8): 886-892. doi:10.13604/j.cnki.46-1064/r.2023.08.19. |
[43] | Cui X, Meng H, Li M, et al. Exosomal Small RNA Sequencing Profiles in Plasma from Subjects with Latent Mycobacterium tuberculosis Infection. Microorganisms, 2024, 12(7):1417. doi:10.3390/microorganisms12071417. |
[44] | Carranza C, Herrera MT, Guzman-Beltran S, et al. A Dual Marker for Monitoring MDR-TB Treatment: Host-Derived miRNAs and M.tuberculosis-Derived RNA Sequences in Serum. Front Immunol, 2021, 12: 760468. doi:10.3389/fimmu.2021.760468. |
[45] | 胡萍, 刘红艳, 高瑜, 等. 血浆外泌体miR-346与耐多药肺结核病患者治疗结果的关系. 中国热带医学, 2023, 23(10): 1082-1087,1103. doi:10.13604/j.cnki.46-1064/r.2023.10.12. |
[46] |
Hu X, Liao S, Bai H, et al. Integrating exosomal microRNAs and electronic health data improved tuberculosis diagnosis. EBioMedicine, 2019, 40: 564-573. doi:10.1016/j.ebiom.2019.01.023.
pmid: 30745169 |
[47] | Jin Y, Liu Y, Yu W, et al. Exosomal microRNAs associated with tuberculosis among people living with human immunodeficiency virus. J Clin Tuberc Other Mycobact Dis, 2024, 36: 100453. doi:10.1016/j.jctube.2024.100453. |
[48] |
Rodriguez-Takeuchi SY, Renjifo ME, Medina FJ. Extrapulmonary Tuberculosis: Pathophysiology and Imaging Findings. Radiographics, 2019, 39(7): 2023-2037. doi:10.1148/rg.2019190109.
pmid: 31697616 |
[49] | Wilmink J, Vollenberg R, Olaru ID, et al. Diagnostic Challenges in Extrapulmonary Tuberculosis: A Single-Center Expe-rience in a High-Resource Setting at a German Tertiary Care Center. Infect Dis Rep, 2025, 17(3):39. doi:10.3390/idr17030039. |
[50] | World Health Organization. High-priority target product profiles for new tuberculosis diagnostics:report of a consensus meeting 2014. Geneva: World Health Organization, 2014. |
[51] | 尹慧敏, 贾永林, 李燕飞, 等. 结核性脑膜炎患者脑脊液外泌体中let-7d表达的研究. 中国实用神经疾病杂志, 2017, 20(6): 9-12. doi:10.3969/j.issn.1673-5110.2017.06.003. |
[52] | 马战友, 高丽丽, 张俊廷, 等. 中枢神经系统感染脑脊液Caveolin-1、Let-7b、 MMP-9及IL-1β表达水平及意义. 中华医院感染学杂志, 2022, 32(18): 2781-2784. doi:10.11816/cn.ni.2022-211978. |
[53] | Dass M, Aittan S, Muthumohan R, et al. Utility of cell-free transrenal DNA for the diagnosis of Tuberculous Meningitis: A proof-of-concept study. Tuberculosis (Edinb), 2022, 135: 102213. doi:10.1016/j.tube.2022.102213. |
[54] |
K Mehta P, Kamra E. Recent trends in diagnosis of urogenital tuberculosis. Future Microbiol, 2020, 15: 159-162. doi:10.2217/fmb-2019-0323.
pmid: 32043374 |
[55] | Kamra E, Prasad T, Rais A, et al. Diagnosis of genitourinary tuberculosis: detection of mycobacterial lipoarabinomannan and MPT-64 biomarkers within urine extracellular vesicles by nano-based immuno-PCR assay. Sci Rep, 2023, 13(1): 11560. doi:10.1038/s41598-023-38740-3. |
[56] | Dahiya B, Kamra E, Alam D, et al. Insight into diagnosis of female genital tuberculosis. Expert Rev Mol Diagn, 2022, 22(6):625-642. doi:10.1080/14737159.2022.2016395. |
[57] | Paris L, Magni R, Zaidi F, et al. Urine lipoarabinomannan glycan in HIV-negative patients with pulmonary tuberculosis correlates with disease severity. Sci Transl Med, 2017, 9(420):eaal2807. doi:10.1126/scitranslmed.aal2807. |
[58] |
Sun Q, Wang S, Dong W, et al. Diagnostic value of Xpert MTB/RIF Ultra for osteoarticular tuberculosis. J Infect, 2019, 79(2): 153-158. doi:10.1016/j.jinf.2019.06.006.
pmid: 31207324 |
[59] | 舒钧, 许南, 杨雪能, 等. 脊柱结核一种新分型方法的设计及可信度检验和治疗探讨. 中国脊柱脊髓杂志, 2025, 35(5): 459-469. |
[60] | Sun Z, Pang X, Wang X, et al. Differential expression analysis of miRNAs in macrophage-derived exosomes in the tuberculosis-infected bone microenvironment. Front Microbiol, 2023, 14: 1236012. doi:10.3389/fmicb.2023.1236012. |
[61] |
Zheng W, LaCourse SM, Song B, et al. Diagnosis of paediatric tuberculosis by optically detecting two virulence factors on extracellular vesicles in blood samples. Nat Biomed Eng, 2022, 6(8): 979-991. doi:10.1038/s41551-022-00922-1.
pmid: 35986185 |
[62] | Wang S, Zheng W, Wang R, et al. Monocrystalline Labeling Enables Stable Plasmonic Enhancement for Isolation-Free Extracellular Vesicle Analysis. Small, 2023, 19(2): e2204298. doi:10.1002/smll.202204298. |
[63] | Yudintceva N, Bobkov D, Sulatsky M, et al. Mesenchymal stem cells-derived extracellular vesicles for therapeutics of renal tuberculosis. Sci Rep, 2024, 14(1): 4495. doi:10.1038/s41598-024-54992-z. |
[64] |
Huang JY, Li H, Mei YT, et al. An Injectable Hydrogel Bioimplant Loaded with Engineered Exosomes and Triple Anti-Tuberculosis Drugs with Potential for Treating Bone and Joint Tuberculosis. Int J Nanomed, 2025, 20: 1285-1302. doi:10.2147/Ijn.S480288.
pmid: 39911262 |
[1] | Fan Jun, Wang Qingya, Wu Chengguo, Lei Rongrong, Zhang Ya, Zhang Ting. Investigation on the psychological and social support status of 445 pulmonary tuberculosis patients in Chongqing metropolitan area [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1007-1013. |
[2] | Huang Weiqiang, Liu Xudong, Wang Lili, Chen Xingxing, Shang Huihui, Xu Ya, Hu Ming. Clinical characteristics and treatment outcomes of extracorporeal membrane oxygenation in 13 patients with severe pulmonary tuberculosis-associated acute respiratory distress syndrome [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1014-1022. |
[3] | Zhang Ye, Liang Wenwen, Huo Chenchao, Shi Jinghua, Qi Xianglong, Cheng Kai, Lu Yu, Xu Jian. Synergistic effect of zuclopenthixol on the anti-tuberculosis activity of clofazimine and its mechanism of action on MmpL5-MmpS5 [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1023-1030. |
[4] | Fan Ruifang, Dai Xiaowei, Yang Xinyu, Chen Shuangshuang, Chen Hao, Yu Lan, Zhao Yanfeng, Li Chuanyou, Wang Nenhan. A study on the identification of Mycobacterium species using fluorescent PCR probe melting curve technique and DNA microarray chip technique [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1031-1037. |
[5] | Xue Yu, Guo Shubin, Lei Xuan, Zhang Jing, Li Wensheng, Liu Yan, Li Huan, Liu Zhifeng, Wang Wei, Wen Li. Construction and analysis of early warning and prediction model for risk factors of initially treated severe pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1038-1043. |
[6] | Abuduresuli Tu’ersun, Abudukeyoumujiang Abulizi, Patiman Maimaiti, Huang Chencui, Shen Lingyan, Mayidili Nijiati. Predicting pulmonary tuberculosis treatment outcomes using longitudinal chest CT radiomics and deep learning [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1044-1052. |
[7] | Jiao Jiahuan, Sun Changfeng, Wu Gang, Huang Fuli, Sheng Yunjian. The value of machine learning algorithm-based diagnostic models in tuberculous pleural effusion [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1053-1061. |
[8] | Kong Hanhan, Chen Zijiao, Zeng Jianfeng, Wu Dan, Tang Lin, Wen Min. Development and reliability and validity testing of the Pulmonary Tuberculosis Symptom Cluster Scale [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1062-1067. |
[9] | Zhu Qingdong, Zhao Chunyan, Xie Zhouhua, Song Shulin, Song Chang. Research progress on the application of artificial intelligence-based CT radiomics in the diagnosis and treatment response monitoring of tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1068-1076. |
[10] | Xia Hui, Zhao Yanlin. The potentials and challenges of using tongue swab for Mycobacterium tuberculosis complex detection through nucleic acid amplification tests in the diagnosis and screening of pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 976-980. |
[11] | Meng Qinglin, Wang Yunxia, Tang Yan, Liu Eryong. Analysis of psychological support of tuberculosis patients at home and abroad [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 981-985. |
[12] | Wang Yunxia, Meng Qinglin, Zhou Lin, Liu Eryong. Analysis of the progress of Tuberculosis Care Pilot Project [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 986-991. |
[13] | Sun Shanhua, Lezhe Laji, Gao Zhidong, Zhao Yao, He Xin, Xu Qiang, Yang Maosheng, Xu Yan. Knowledge, attitude and practice survey on tuberculosis prevention and control among specific populations in Meigu County, Liangshan Yi Autonomous Prefecture, Sichuan Province [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 992-998. |
[14] | Tang Lingling, Chen Danping, Li Yuru, Jiang Hua, Huang Le, Su Limin. Analysis of family functioning of patients with drug-resistant pulmonary tuberculosis and its influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 999-1006. |
[15] | Tuberculosis Control Branch of Chinese Antituberculosis Association, Standardization Professional Branch of Chinese Antituberculosis Association, Elderly Tuberculosis Control Branch of Chinese Antituberculosis Association. Expert consensus on the application of Mycobacterium tuberculosis infection detection technologies [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 813-829. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||