Chinese Journal of Antituberculosis ›› 2025, Vol. 47 ›› Issue (8): 1068-1076.doi: 10.19982/j.issn.1000-6621.20250149
• Review Articles • Previous Articles Next Articles
Zhu Qingdong1, Zhao Chunyan1, Xie Zhouhua2, Song Shulin3, Song Chang1()
Received:
2025-04-11
Online:
2025-08-10
Published:
2025-08-01
Contact:
Song Chang, Email: songchang2022@163.com
Supported by:
CLC Number:
Zhu Qingdong, Zhao Chunyan, Xie Zhouhua, Song Shulin, Song Chang. Research progress on the application of artificial intelligence-based CT radiomics in the diagnosis and treatment response monitoring of tuberculosis[J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1068-1076. doi: 10.19982/j.issn.1000-6621.20250149
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20250149
[1] | 赵春艳, 宋畅, 宋树林, 等. 纳米孔测序检测痰液样本在肺结核诊断中的应用. 中国临床医生杂志, 2024, 52(4): 413-416. doi:10.3969/j.issn.2095-8552.2024.04.009. |
[2] | Song C, Zhao C, Nong Y, et al. Exploring the accuracy of third-generation Nanopore Sequencing technology for detecting Mycobacterium tuberculosis in patients with diabetes mellitus. Diagn Microbiol Infect Dis, 2024, 110(1): 116392. doi:10.1016/j.diagmicrobio.2024.116392. |
[3] | Linsen S, Kamoun A, Gunda A, et al. A comparison of CXR-CAD software to radiologists in identifying COVID-19 in individuals evaluated for Sars CoV-2 infection in Malawi and Zambia. PLoS Digital Health, 2025, 4(1): e0000535. doi:10.1371/journal.pdig.0000535. |
[4] | Macpherson L, Kik SV, Quartagno M, et al. Diagnostic Accuracy of Chest X-ray Computer-Aided Detection Software for Detection of Prevalent and Incident Tuberculosis in Household Contacts. Clin Infect Dis, 2025, 80(3): 626-636. doi:10.1093/cid/ciae528. |
[5] |
Brown M, Browning P, Wahi-Anwar MW, et al. Integration of Chest CT CAD into the Clinical Workflow and Impact on Radiologist Efficiency. Acad Radiol, 2019, 26(5): 626-631. doi:10.1016/j.acra.2018.07.006.
pmid: 30097402 |
[6] | Hwang EJ, Jeong WG, David PM, et al. AI for Detection of Tuberculosis: Implications for Global Health. Radiol Artif Intell, 2024, 6(2):e230327. doi:10.1148/ryai.230327. |
[7] | Bortolotto C, Lancia A, Stelitano C, et al. Radiomics features as predictive and prognostic biomarkers in NSCLC. Expert Rev Anticancer Ther, 2021, 21(3): 257-266. doi:10.1080/14737140.2021.1852935. |
[8] | Liang S, Ma J, Wang G, et al. The Application of Artificial Intelligence in the Diagnosis and Drug Resistance Prediction of Pulmonary Tuberculosis. Front Med (Lausanne), 2022, 9: 935080. doi:10.3389/fmed.2022.935080. |
[9] | Russo L, Charles-Davies D, Bottazzi S, et al. Radiomics for clinical decision support in radiation oncology. Clin Oncol (R Coll Radiol), 2024, 36(8): e269-e281. doi:10.1016/j.clon.2024.03.003. |
[10] | 沙敏, 朱卫东, 金亦凡, 等. 伴肺组织肉芽肿性炎的肺结核与肺结节病多维度鉴别诊断研究. 结核与肺部疾病杂志, 2024, 5(2): 135-142. doi:10.19983/j.issn.2096-8493.2024026. |
[11] | 黎惠如, 方伟军, 刘曾维, 等. CT在单发结节或肿块型肺结核和肺癌鉴别中的作用研究. 新发传染病电子杂志, 2021, 6(4): 323-326. doi:10.19871/j.cnki.xfcrbzz.2021.04.013. |
[12] | 程明远. 基于薄层CT影像组学模型对于空洞型肺癌与空洞型肺结核的相关性研究. 南昌:南昌大学, 2022. doi:10.27232/d.cnki.gnchu.2022.000934. |
[13] |
Du D, Gu J, Chen X, et al. Integration of PET/CT Radiomics and Semantic Features for Differentiation between Active Pulmonary Tuberculosis and Lung Cancer. Mol Imaging Biol, 2021, 23(2):287-298. doi:10.1007/s11307-020-01550-4.
pmid: 33030709 |
[14] |
Wei S, Shi B, Zhang J, et al. Differentiating mass-like tuberculosis from lung cancer based on radiomics and CT features. Transl Cancer Res, 2021, 10(10): 4454-4463. doi:10.21037/tcr-21-1719.
pmid: 35116302 |
[15] |
Tan H, Wang Y, Jiang Y, et al. A study on the differential of solid lung adenocarcinoma and tuberculous granuloma nodules in CT images by Radiomics machine learning. Sci Rep, 2023, 13(1):5853. doi:10.1038/s41598-023-32979-6.
pmid: 37041262 |
[16] |
Li Y, Lyu B, Wang R, et al. Machine learning-based radiomics to distinguish pulmonary nodules between lung adenocarcinoma and tuberculosis. Thorac Cancer, 2024, 15(6): 466-476. doi:10.1111/1759-7714.15216.
pmid: 38191149 |
[17] | Yang L, Jiang Z, Tong J, et al. Development and validation of a preoperative CT-based radiomics nomogram to differentiate tuberculosis granulomas from lung adenocarcinomas: an external validation study. BMC Cancer, 2024, 24(1): 670. doi:10.1186/s12885-024-12422-3. |
[18] | Zhao W, Xiong Z, Jiang Y, et al. Radiomics based on enhanced CT for differentiating between pulmonary tuberculosis and pulmonary adenocarcinoma presenting as solid nodules or masses. J Cancer Res Clin Oncol, 2023, 149(7): 3395-3408. doi:10.1007/s00432-022-04256-y. |
[19] | Bao X, Peng Q, Bian D, et al. Short-term intra- and peri-tumoral spatiotemporal CT radiomics for predicting major pathological response to neoadjuvant chemoimmunotherapy in non-small cell lung cancer. Eur Radiol, 2025, 13(1):5853. doi:10.1007/s00330-025-11563-8. |
[20] |
Cui EN, Yu T, Shang SJ, et al. Radiomics model for distinguishing tuberculosis and lung cancer on computed tomography scans. World J Clin Cases, 2020, 8(21): 5203-5212. doi:10.12998/wjcc.v8.i21.5203.
pmid: 33269256 |
[21] | Song C, Zhao CY, Song SL, et al. Differentiating Lung Adenocarcinoma from Tuberculous Nodules in HIV/AIDS Patients Using Preoperative CT-Based Intratumoral and Peritumoral Radiomics Combined with Clinical Features. J Multidiscip Healthc, 2025, 18: 2693-2706. doi:10.2147/JMDH.S524527. |
[22] | Keicher M, Burwinkel H, Bani-Harouni D, et al. Multimodal graph attention network for COVID-19 outcome prediction. Sci Rep, 2023, 13(1): 19539. doi:10.1038/s41598-023-46625-8. |
[23] | Liu J, Wang H, Shan X, et al. Hybrid transformer convolutional neural network-based radiomics models for osteoporosis screening in routine CT. BMC Med Imaging, 2024, 24(1): 62. doi:10.1186/s12880-024-01240-5. |
[24] | Zhang X, Dong X, Saripan MIB, et al. Deep learning PET/CT-based radiomics integrates clinical data: A feasibility study to distinguish between tuberculosis nodules and lung cancer. Thorac Cancer, 2023, 14(19): 1802-1811. doi:10.1111/1759-7714.14924. |
[25] | Gopalaswamy R, Shanmugam S, Mondal R, et al. Of tuberculosis and non-tuberculous mycobacterial infections-a comparative analysis of epidemiology, diagnosis and treatment. J Biomed Sci, 2020, 27(1): 74. doi:10.1186/s12929-020-00667-6. |
[26] | Yan Q, Zhao W, Kong H, et al. CT-based radiomics analysis of consolidation characteristics in differentiating pulmonary disease of non-tuberculous mycobacterium from pulmonary tuberculosis. Exp Ther Med, 2024, 27(3): 112. doi:10.3892/etm.2024.12400. |
[27] | Zhou L, Wang Y, Zhu W, et al. A retrospective study diffe-rentiating nontuberculous mycobacterial pulmonary disease from pulmonary tuberculosis on computed tomography using radiomics and machine learning algorithms. Ann Med, 2024, 56(1): 2401613. doi:10.1080/07853890.2024.2401613. |
[28] | 姚阳阳, 梁长华, 韩东明, 等. 基于CT影像组学结合临床特征鉴别肺结核与非结核分枝杆菌肺病的研究. 中国防痨杂志, 2024, 46(3): 302-310. doi:10.19982/j.issn.1000-6621.20230337. |
[29] | 沈洁, 余敏林, 金晓梅, 等. 全肺CT影像组学联合临床及常规CT特征鉴别非结核分枝杆菌肺病与肺结核. 中国介入影像与治疗学, 2025, 22(1): 16-21. doi:10.13929/j.issn.1672-8475.2025.01.004. |
[30] | Wang L, Ding W, Mo Y, et al. Distinguishing nontuberculous mycobacteria from Mycobacterium tuberculosis lung disease from CT images using a deep learning framework. Eur J Nucl Med Mol Imaging, 2021, 48(13): 4293-4306. doi:10.1007/s00259-021-05432-x. |
[31] | Vaughn VM, Dickson RP, Horowitz JK, et al. Community-Acquired Pneumonia: A Review. JAMA, 2024, 332(15): 1282-1295. doi:10.1001/jama.2024.14796. |
[32] | Wang B, Li M, Ma H, et al. Computed tomography-based predictive nomogram for differentiating primary progressive pulmonary tuberculosis from community-acquired pneumonia in children. BMC Med Imaging, 2019, 19(1): 63. doi:10.1186/s12880-019-0355-z. |
[33] | Li P, Wang J, Tang M, et al. A CT-based radiomics predictive nomogram to identify pulmonary tuberculosis from community-acquired pneumonia: a multicenter cohort study. Front Cell Infect Microbiol, 2024, 14: 1388991. doi:10.3389/fcimb.2024.1388991. |
[34] | Zhao W, Xiong Z, Tian D, et al. The adding value of contrast-enhanced CT radiomics: Differentiating tuberculosis from non-tuberculous infectious lesions presenting as solid pulmonary nodules or masses. Front Public Health, 2022, 10: 1018527. doi:10.3389/fpubh.2022.1018527. |
[35] | 樊梦思, 赵红, 曹捍波, 等. 基于CT平扫影像组学模型鉴别结节/肿块型肺隐球菌病及肺腺癌与肺结核. 中国医学影像技术, 2020, 36(6): 853-857. doi:10.13929/j.issn.1003-3289.2020.06.011. |
[36] |
Rodriguez-Takeuchi SY, Renjifo ME, Medina FJ. Extrapulmonary Tuberculosis: Pathophysiology and Imaging Findings. Radiographics, 2019, 39(7): 2023-2037. doi:10.1148/rg.2019190109.
pmid: 31697616 |
[37] |
Norbis L, Alagna R, Tortoli E, et al. Challenges and perspectives in the diagnosis of extrapulmonary tuberculosis. Expert Rev Anti Infect Ther, 2014, 12(5):633-647. doi:10.1586/14787210.2014.899900.
pmid: 24717112 |
[38] | Shu Y, Chen Z, Chi J, et al. A Machine Learning Method for Differentiation Crohn’s Disease and Intestinal Tuberculosis. J Multidiscip Healthc, 2024, 17: 3835-3847. doi:10.2147/JMDH.S470429. |
[39] | Zhu C, Yu Y, Wang S, et al. A Novel Clinical Radiomics Nomogram to Identify Crohn’s Disease from Intestinal Tuberculosis. J Inflamm Res, 2021, 14: 6511-6521. doi:10.2147/JIR.S344563. |
[40] | Gong T, Li M, Pu H, et al. Computed tomography enterography-based multiregional radiomics model for differential diagnosis of Crohn’s disease from intestinal tuberculosis. Abdom Radiol (NY), 2023, 48(6): 1900-1910. doi:10.1007/s00261-023-03889-y. |
[41] | Cheng M, Zhang H, Huang W, et al. Deep Learning Radiomics Analysis of CT Imaging for Differentiating Between Crohn’s Disease and Intestinal Tuberculosis. J Imaging Inform Med, 2024, 37(4): 1516-1528. doi:10.1007/s10278-024-01059-0. |
[42] | 陈新, 唐晨虎, 姜加学, 等. 颈部淋巴瘤与淋巴结结核CT平扫图像影像组学鉴别可行性研究. 医学研究与战创伤救治, 2023, 36(1): 64-68. doi:10.16571/j.cnki.2097-2768.2023.01.012. |
[43] | Shen MT, Liu X, Gao Y, et al. Radiomics-based quantitative contrast-enhanced CT analysis of abdominal lymphadenopathy to differentiate tuberculosis from lymphoma. Precis Clin Med, 2024, 7(1): pbae002. doi:10.1093/pcmedi/pbae002. |
[44] | Zhang R, Xu Y, Gao S, et al. Observer- and radiomics model-based computed tomography classification of suppurative versus tuberculous lymphadenitis complicated with nodal necrosis of the neck in children. Precis Clin Med, 2023, 53(13): 2586-2596. doi:10.1007/s00247-023-05761-z. |
[45] | Al Bulushi Y, Saint-Martin C, Muthukrishnan N, et al. Radiomics and machine learning for the diagnosis of pediatric cervical non-tuberculous mycobacterial lymphadenitis. Sci Rep, 2022, 12(1): 2962. doi:10.1038/s41598-022-06884-3. |
[46] | Song C, Zhao CY, Li K, et al. A 2.5D transfer deep learning model based on artificial intelligence for differentiating lymphoma and tuberculous lymphadenitis in HIV/AIDS patients. J Infect, 2025, 90(3): 106439. doi:10.1016/j.jinf.2025.106439. |
[47] |
Ma Q, Yi Y, Liu T, et al. MRI-based radiomics signature for identification of invisible basal cisterns changes in tuberculous meningitis: a preliminary multicenter study. Eur Radiol, 2022, 32(12): 8659-8669. doi:10.1007/s00330-022-08911-3.
pmid: 35748898 |
[48] | Wang W, Fan Z, Zhen J. MRI radiomics-based evaluation of tuberculous and brucella spondylitis. J Int Med Res, 2023, 51(8): 3000605231195156. doi:10.1177/03000605231195156. |
[49] | Farhat M, Cox H, Ghanem M, et al. Drug-resistant tuberculosis: a persistent global health concern. Nat Rev Microbiol, 2024, 22(10): 617-635. doi:10.1038/s41579-024-01025-1. |
[50] | Murphy SG, Smith C, Lapierre P, et al. Direct detection of drug-resistant Mycobacterium tuberculosis using targeted next generation sequencing. Front Public Health, 2023, 11: 1206056. doi:10.3389/fpubh.2023.1206056. |
[51] | Li Y, Wang B, Wen L, et al. Machine learning and radiomics for the prediction of multidrug resistance in cavitary pulmonary tuberculosis: a multicentre study. Eur Radiol, 2023, 33(1): 391-400. doi:10.1007/s00330-022-08997-9. |
[52] |
Li Y, Xu Z, Lv X, et al. Radiomics analysis of lung CT for multidrug resistance prediction in active tuberculosis: a multicentre study. Eur Radiol, 2023, 33(9): 6308-6317. doi:10.1007/s00330-023-09589-x.
pmid: 37004571 |
[53] | Jiang F, Xu C, Wang Y, et al. A CT-based radiomics analyses for differentiating drug-resistant and drug-sensitive pulmonary tuberculosis. BMC Med Imaging, 2024, 24(1): 307. doi:10.1186/s12880-024-01481-4. |
[54] | Sultana ZZ, Hoque FU, Beyene J, et al. HIV infection and multidrug resistant tuberculosis: a systematic review and meta-analysis. BMC Infect Dis, 2021, 21(1): 51. doi:10.1186/s12879-020-05749-2. |
[55] | Song C, Huang A, Zhao C, et al. Multimodal radiomics integrating deep learning and clinical features for diagnosing multidrug-resistant tuberculosis in HIV/AIDS patients. J Glob Antimicrob Resist, 2025, 43: 134-142. doi:10.1016/j.jgar.2025.04.013. |
[56] |
Lv X, Li Y, Cai B, et al. Utility of Machine Learning and Radiomics Based on Cavity for Predicting the Therapeutic Response of MDR-TB. Infect Drug Resist, 2023, 16: 6893-6904. doi:10.2147/IDR.S435984.
pmid: 37920476 |
[57] | Nijiati M, Guo L, Abulizi A, et al. Deep learning and radiomics of longitudinal CT scans for early prediction of tuberculosis treatment outcomes. Eur J Radiol, 2023, 169: 111180. doi:10.1016/j.ejrad.2023.111180. |
[58] | Nardone V, Reginelli A, Rubini D, et al. Delta radiomics: an updated systematic review. Radiol Med, 2024, 129(8): 1197-1214. doi:10.1007/s11547-024-01853-4. |
[1] | Fan Jun, Wang Qingya, Wu Chengguo, Lei Rongrong, Zhang Ya, Zhang Ting. Investigation on the psychological and social support status of 445 pulmonary tuberculosis patients in Chongqing metropolitan area [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1007-1013. |
[2] | Huang Weiqiang, Liu Xudong, Wang Lili, Chen Xingxing, Shang Huihui, Xu Ya, Hu Ming. Clinical characteristics and treatment outcomes of extracorporeal membrane oxygenation in 13 patients with severe pulmonary tuberculosis-associated acute respiratory distress syndrome [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1014-1022. |
[3] | Zhang Ye, Liang Wenwen, Huo Chenchao, Shi Jinghua, Qi Xianglong, Cheng Kai, Lu Yu, Xu Jian. Synergistic effect of zuclopenthixol on the anti-tuberculosis activity of clofazimine and its mechanism of action on MmpL5-MmpS5 [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1023-1030. |
[4] | Fan Ruifang, Dai Xiaowei, Yang Xinyu, Chen Shuangshuang, Chen Hao, Yu Lan, Zhao Yanfeng, Li Chuanyou, Wang Nenhan. A study on the identification of Mycobacterium species using fluorescent PCR probe melting curve technique and DNA microarray chip technique [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1031-1037. |
[5] | Xue Yu, Guo Shubin, Lei Xuan, Zhang Jing, Li Wensheng, Liu Yan, Li Huan, Liu Zhifeng, Wang Wei, Wen Li. Construction and analysis of early warning and prediction model for risk factors of initially treated severe pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1038-1043. |
[6] | Abuduresuli Tu’ersun, Abudukeyoumujiang Abulizi, Patiman Maimaiti, Huang Chencui, Shen Lingyan, Mayidili Nijiati. Predicting pulmonary tuberculosis treatment outcomes using longitudinal chest CT radiomics and deep learning [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1044-1052. |
[7] | Jiao Jiahuan, Sun Changfeng, Wu Gang, Huang Fuli, Sheng Yunjian. The value of machine learning algorithm-based diagnostic models in tuberculous pleural effusion [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1053-1061. |
[8] | Kong Hanhan, Chen Zijiao, Zeng Jianfeng, Wu Dan, Tang Lin, Wen Min. Development and reliability and validity testing of the Pulmonary Tuberculosis Symptom Cluster Scale [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1062-1067. |
[9] | Zhu Qingyu, Liu Jiayun, Long Yin. Advances in the application of extracellular vesicles and the diagnosis of tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 1077-1084. |
[10] | Xia Hui, Zhao Yanlin. The potentials and challenges of using tongue swab for Mycobacterium tuberculosis complex detection through nucleic acid amplification tests in the diagnosis and screening of pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 976-980. |
[11] | Meng Qinglin, Wang Yunxia, Tang Yan, Liu Eryong. Analysis of psychological support of tuberculosis patients at home and abroad [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 981-985. |
[12] | Wang Yunxia, Meng Qinglin, Zhou Lin, Liu Eryong. Analysis of the progress of Tuberculosis Care Pilot Project [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 986-991. |
[13] | Sun Shanhua, Lezhe Laji, Gao Zhidong, Zhao Yao, He Xin, Xu Qiang, Yang Maosheng, Xu Yan. Knowledge, attitude and practice survey on tuberculosis prevention and control among specific populations in Meigu County, Liangshan Yi Autonomous Prefecture, Sichuan Province [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 992-998. |
[14] | Tang Lingling, Chen Danping, Li Yuru, Jiang Hua, Huang Le, Su Limin. Analysis of family functioning of patients with drug-resistant pulmonary tuberculosis and its influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(8): 999-1006. |
[15] | Tuberculosis Control Branch of Chinese Antituberculosis Association, Standardization Professional Branch of Chinese Antituberculosis Association, Elderly Tuberculosis Control Branch of Chinese Antituberculosis Association. Expert consensus on the application of Mycobacterium tuberculosis infection detection technologies [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 813-829. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||