Chinese Journal of Antituberculosis ›› 2025, Vol. 47 ›› Issue (6): 792-797.doi: 10.19982/j.issn.1000-6621.20250014
• Review Articles • Previous Articles Next Articles
Qi Qi, Wang Zihao, Ye Linlin, Peng Wenbei, Zhou Qiong()
Received:
2025-01-11
Online:
2025-06-10
Published:
2025-06-11
Contact:
Zhou Qiong, Email: Supported by:
CLC Number:
Qi Qi, Wang Zihao, Ye Linlin, Peng Wenbei, Zhou Qiong. Immune checkpoint inhibitors and tuberculosis[J]. Chinese Journal of Antituberculosis, 2025, 47(6): 792-797. doi: 10.19982/j.issn.1000-6621.20250014
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20250014
[1] | Hook EB. Latent Tuberculosis Infection. N Engl J Med, 2022, 386(13):e33. doi:10.1056/NEJMc2200195. |
[2] |
Cheng MP, Abou Chakra CN, Yansouni CP, et al. Risk of Active Tuberculosis in Patients with Cancer: A Systematic Review and Meta-Analysis. Clin Infect Dis, 2017, 64(5):635-644. doi:10.1093/cid/ciw838.
pmid: 27986665 |
[3] | Chen L, Zhang L, Zhang L, et al. Incidence of active tuberculosis in HIV-infected individuals not receiving universal tuberculosis preventive treatment. Chin Med J (Engl), 2024, 137(22):2761-2763. doi:10.1097/CM9.0000000000003394. |
[4] |
Alemu A, Bitew ZW, Diriba G, et al. Tuberculosis incidence in patients with chronic kidney disease: a systematic review and meta-analysis. Int J Infect Dis, 2022, 122:188-201. doi:10.1016/j.ijid.2022.05.046.
pmid: 35609860 |
[5] |
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer, 2012, 12(4):252-264. doi:10.1038/nrc3239.
pmid: 22437870 |
[6] | Lin X, Kang K, Chen P, et al. Regulatory mechanisms of PD-1/PD-L 1 in cancers. Mol Cancer, 2024, 23(1):108. doi:10.1186/s12943-024-02023-w. |
[7] | Cheng B, Lv J, Xiao Y, et al. Small molecule inhibitors targeting PD-L1, CTLA4, VISTA, TIM-3, and LAG3 for cancer immunotherapy (2020—2024). Eur J Med Chem, 2025, 283:117141. doi:10.1016/j.ejmech.2024.117141. |
[8] | 付烊, 王俊, 宋羽霄, 等. 中国临床肿瘤学会《免疫检查点抑制剂临床应用指南》2024版更新解读. 医药导报, 2024, 43(8):1181-1186. doi:10.3870/j.issn.1004-0781.2024.08.001. |
[9] |
Sharma P, Goswami S, Raychaudhuri D, et al. Immune checkpoint therapy-current perspectives and future directions. Cell, 2023, 186(8):1652-1669. doi:10.1016/j.cell.2023.03.006.
pmid: 37059068 |
[10] | Suijkerbuijk KPM, van Eijs MJM, van Wijk F, et al. Clinical and translational attributes of immune-related adverse events. Nat Cancer, 2024, 5(4):557-571. doi:10.1038/s43018-024-00730-3. |
[11] |
Haanen J, Obeid M, Spain L, et al. Management of toxicities from immunotherapy: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol, 2022, 33(12):1217-1238. doi:10.1016/j.annonc.2022.10.001.
pmid: 36270461 |
[12] | Mon HC, Lee PC, Hung YP, et al. Functional cure of hepatitis B in patients with cancer undergoing immune checkpoint inhibitor therapy. J Hepatol, 2025, 82(1):51-61. doi:10.1016/j.jhep.2024.07.018. |
[13] | Das S, Suarez G, Beswick EJ, et al. Expression of B7-H 1 on gastric epithelial cells: its potential role in regulating T cells during Helicobacter pylori infection. J Immunol, 2006, 176(5):3000-3009. doi:10.4049/jimmunol.176.5.3000. |
[14] | Hamashima R, Uchino J, Morimoto Y, et al. Association of immune checkpoint inhibitors with respiratory infections: A review. Cancer Treat Rev, 2020, 90:102109. doi:10.1016/j.ctrv.2020.102109. |
[15] | Lázár-Molnár E, Gácser A, Freeman GJ, et al. The PD-1/PD-L costimulatory pathway critically affects host resistance to the pathogenic fungus Histoplasma capsulatum. Proc Natl Acad Sci U S A, 2008, 105(7):2658-2663. doi:10.1073/pnas.0711918105. |
[16] |
Fehrenbacher L, Spira A, POPLAR Study Group, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet, 2016, 387(10030):1837-1846. doi:10.1016/S0140-6736(16)00587-0.
pmid: 26970723 |
[17] |
Comstock GW, Livesay VT, Woolpert SF. The prognosis of a positive tuberculin reaction in childhood and adolescence. Am J Epidemiol, 1974, 99(2):131-138. doi:10.1093/oxfordjournals.aje.a121593.
pmid: 4810628 |
[18] | Fujita K, Yamamoto Y, Kanai O, et al. Incidence of Active Tuberculosis in Lung Cancer Patients Receiving Immune Checkpoint Inhibitors. Open Forum Infect Dis, 2020, 7(5):ofaa126. doi:10.1093/ofid/ofaa126. |
[19] | Morelli T, Fujita K, Redelman-Sidi G, et al. Infections due to dysregulated immunity: an emerging complication of cancer immunotherapy. Thorax, 2022, 77(3):304-311. doi:10.1136/thoraxjnl-2021-217260. |
[20] | Liu K, Wang D, Yao C, et al. Increased Tuberculosis Incidence Due to Immunotherapy Based on PD-1 and PD-L 1 Blockade: A Systematic Review and Meta-Analysis. Front Immunol, 2022, 13:727220. doi:10.3389/fimmu.2022.727220. |
[21] | Chen HW, Kuo YW, Chen CY, et al. Increased Tuberculosis Reactivation Risk in Patients Receiving Immune Checkpoint Inhibitor-Based Therapy. Oncologist, 2024, 29(4):e498-e506. doi:10.1093/oncolo/oyad340. |
[22] | Bae S, Kim YJ, Kim MJ, et al. Risk of tuberculosis in patients with cancer treated with immune checkpoint inhibitors: a nationwide observational study. J Immunother Cancer, 2021, 9(9):e002960. doi:10.1136/jitc-2021-002960. |
[23] |
Reungwetwattana T, Adjei AA. Anti-PD-1 Antibody Treatment and the Development of Acute Pulmonary Tuberculosis. J Thorac Oncol, 2016, 11(12):2048-2050. doi:10.1016/j.jtho.2016.10.008.
pmid: 27866633 |
[24] |
Dhar C. Testing for latent tuberculosis before starting patients on immune checkpoint inhibitors. Indian J Cancer, 2021, 58(3):469-470. doi:10.4103/ijc.IJC_283_20.
pmid: 34380834 |
[25] | Tanoue T, Morita S, Plichta DR, et al. A defined commensal consortium elicits CD 8 T cells and anti-cancer immunity. Nature, 2019, 565(7741):600-605. doi:10.1038/s41586-019-0878-z. |
[26] | Barber DL, Sakai S, Kudchadkar RR, et al. Tuberculosis following PD-1 blockade for cancer immunotherapy. Sci Transl Med, 2019, 11(475):eaat2702. doi:10.1126/scitranslmed.aat2702. |
[27] |
Walker NF, Stek C, Wasserman S, et al. The tuberculosis-associated immune reconstitution inflammatory syndrome: recent advances in clinical and pathogenesis research. Curr Opin HIV AIDS, 2018, 13(6):512-521. doi:10.1097/COH.0000000000000502.
pmid: 30124473 |
[28] |
O’Garra A, Redford PS, McNab FW, et al. The immune response in tuberculosis. Annu Rev Immunol, 2013, 31:475-527. doi:10.1146/annurev-immunol-032712-095939.
pmid: 23516984 |
[29] |
Elkington PT, Friedland JS. Permutations of time and place in tuberculosis. Lancet Infect Dis, 2015, 15(11):1357-1360. doi:10.1016/S1473-3099(15)00135-8.
pmid: 26321650 |
[30] |
Singh A, Mohan A, Dey AB, et al. Inhibiting the programmed death 1 pathway rescues Mycobacterium tuberculosis-specific interferon γ-producing T cells from apoptosis in patients with pulmonary tuberculosis. J Infect Dis, 2013, 208(4):603-615. doi:10.1093/infdis/jit206.
pmid: 23661793 |
[31] | Qin Y, Wang Q, Shi J. Immune checkpoint modulating T cells and NK cells response to Mycobacterium tuberculosis infection. Microbiol Res, 2023, 273:127393. doi:10.1016/j.micres.2023.127393. |
[32] |
Vaddi A, Hulsebus HJ, O’Neill EL, et al. A narrative review of the controversy on the risk of mycobacterial infections with immune checkpoint inhibitor use: does Goldilocks have the answer?. J Thorac Dis, 2024, 16(2):1601-1624. doi:10.21037/jtd-23-1395.
pmid: 38505086 |
[33] | Tezera LB, Bielecka MK, Ogongo P, et al. Anti-PD-1 immunotherapy leads to tuberculosis reactivation via dysregulation of TNF-α. Elife, 2020, 9:e52668. doi:10.7554/eLife.52668. |
[34] | 赵祥, 程渊, 张蒙, 等. 接受免疫检查点抑制剂治疗的晚期肺癌患者的潜伏结核感染及活动性结核病管理. 中华医学杂志, 2022, 102(6):454-462. doi:10.3760/cma.j.cn112137-20211018-02305. |
[35] | Ruiz-de la Cruz ML, Salinas-Carmona MC. The immune exhaustion paradox: activated functionality during chronic bacterial infections. J Infect Dev Ctries, 2024, 18(12):1824-1836. doi:10.3855/jidc.19754. |
[36] |
Fujita K, Terashima T, Mio T. Anti-PD1 Antibody Treatment and the Development of Acute Pulmonary Tuberculosis. J Thorac Oncol, 2016, 11(12):2238-2240. doi:10.1016/j.jtho.2016.07.006.
pmid: 27423391 |
[37] | Chu YC, Fang KC, Chen HC, et al. Pericardial Tamponade Caused by a Hypersensitivity Response to Tuberculosis Reactivation after Anti-PD-1 Treatment in a Patient with Advanced Pulmonary Adenocarcinoma. J Thorac Oncol, 2017, 12(8):e111-e114. doi:10.1016/j.jtho.2017.03.012. |
[38] |
Takata S, Koh G, Han Y, et al. Paradoxical response in a patient with non-small cell lung cancer who received nivolumab followed by anti-Mycobacterium tuberculosis agents. J Infect Chemother, 2019, 25(1):54-58. doi:10.1016/j.jiac.2018.06.016.
pmid: 30055859 |
[39] | Sun CY, Shen CI, Feng JY, et al. Severe hepatitis related to immune-checkpoint inhibitor in a patient with non-small-cell lung cancer and pulmonary tuberculosis. Postgrad Med J, 2021, 97(1151):556-557. doi:10.1136/postgradmedj-2020-138123. |
[40] | 熊坤龙, 程训佳, 张文宏, 等. 中性粒细胞在抗结核免疫中的作用. 微生物与感染, 2018, 13(3):186-192. doi:10.3969/j.issn.1673-6184.2018.03.008. |
[41] | Borkute RR, Woelke S, Pei G, et al. Neutrophils in Tuberculosis: Cell Biology, Cellular Networking and Multitasking in Host Defense. Int J Mol Sci, 2021, 22(9):4801. doi:10.3390/ijms22094801. |
[42] | Pedrosa J, Saunders BM, Appelberg R, et al. Neutrophils play a protective nonphagocytic role in systemic Mycobacterium tuberculosis infection of mice. Infect Immun, 2000, 68(2):577-583. doi:10.1128/IAI.68.2.577-583.2000. |
[43] | 温淑芳, 魏荣荣, 李浩然, 等. CD4+和CD8+T细胞在结核病免疫应答中的作用. 中国防痨杂志, 2024, 46(4):479-484. doi:10.19982/j.issn.1000-6621.20230452. |
[44] | Delanoy N, Michot JM, Comont T, et al. Haematological immune-related adverse events induced by anti-PD-1 or anti-PD-L 1 immunotherapy: a descriptive observational study. Lancet Haematol, 2019, 6(1):e48-e57. doi:10.1016/S2352-3026(18)30175-3. |
[45] | Im Y, Lee J, Kim SJ, et al. Development of tuberculosis in cancer patients receiving immune checkpoint inhibitors. Respir Med, 2020, 161:105853. doi:10.1016/j.rmed.2019.105853. |
[46] | Byeon S, Cho JH, Jung HA, et al. PD-1 inhibitors for non-small cell lung cancer patients with special issues: Real-world evidence. Cancer Med, 2020, 9(7):2352-2362. doi:10.1002/cam4.2868. |
[47] | Zhang YB, Liu SJ, Hu ZD, et al. Increased Th17 activation and gut microbiota diversity are associated with pembrolizumab-triggered tuberculosis. Cancer Immunol Immunother, 2020, 69(12):2665-2671. doi:10.1007/s00262-020-02687-5. |
[48] | Kauffman KD, Sakai S, Lora NE, et al. PD-1 blockade exacerbates Mycobacterium tuberculosis infection in rhesus macaques. Sci Immunol, 2021, 6(55):eabf3861. doi:10.1126/sciimmunol.abf3861. |
[49] | Dobler CC, Cheung K, Nguyen J, et al. Risk of tuberculosis in patients with solid cancers and haematological malignancies: a systematic review and meta-analysis. Eur Respir J, 2017, 50(2):1700157. doi:10.1183/13993003.00157-2017. |
[50] |
US Preventive Services Task Force, Nicholson WK, Silverstein M, et al. Screening for Latent Tuberculosis Infection in Adults: US Preventive Services Task Force Recommendation Statement. JAMA, 2023, 329(17):1487-1494. doi:10.1001/jama.2023.4899.
pmid: 37129649 |
[51] | He Y, Peng D, Liang P, et al. Immune Checkpoint Inhibitors and Tuberculosis Infection in Lung Cancer: A Case Series and Systematic Review With Pooled Analysis. J Clin Pharmacol, 2023, 63(4):397-409. doi:10.1002/jcph.2170. |
[52] |
Zhu J, He Z, Liang D, et al. Pulmonary tuberculosis associated with immune checkpoint inhibitors: a pharmacovigilance study. Thorax, 2022, 77(7):721-723. doi:10.1136/thoraxjnl-2021-217575.
pmid: 35277447 |
[53] | Sun W, Zhang L, Liang J, et al. Comparison of clinical and imaging features between pulmonary tuberculosis complicated with lung cancer and simple pulmonary tuberculosis: a systematic review and meta-analysis. Epidemiol Infect, 2022, 150:e43. doi:10.1017/S0950268822000176. |
[54] | Picchi H, Mateus C, Chouaid C, et al. Infectious complications associated with the use of immune checkpoint inhibitors in oncology: reactivation of tuberculosis after anti PD-1 treatment. Clin Microbiol Infect, 2018, 24(3):216-218. doi:10.1016/j.cmi.2017.12.003. |
[55] |
Tsai CC, Chen JH, Wang YC, et al. Re-activation of pulmonary tuberculosis during anti-programmed death-1 (PD-1) treatment. QJM, 2019, 112(1):41-42. doi:10.1093/qjmed/hcy243.
pmid: 30351391 |
[56] | Papadaki E, Katerina M, Anastasios B, et al. Tuberculosis Infection in a Patient with Lung Cancer under PD-L1 Inhibition: A Case Report. J Tubercul Research, 2020, 8:158-164. doi:10.4236/jtr.2020.83014. |
[57] | Fujita T, Endo M, Gu Y, et al. Mycobacterium tuberculosis infection in cancer patients at a tertiary care cancer center in Japan. J Infect Chemother, 2014, 20(3):213-216. doi:10.1016/j.jiac.2013.11.005. |
[58] | Ho JC, Leung CC. Management of co-existent tuberculosis and lung cancer. Lung Cancer, 2018, 122:83-87. doi:10.1016/j.lungcan.2018.05.030. |
[59] | Lin C, Xu G, Gao S, et al. Tuberculosis infection following immune checkpoint inhibitor treatment for advanced cancer: a case report and literature review. Front Immunol, 2023, 14:1162190. doi:10.3389/fimmu.2023.1162190. |
[60] | Yamamiya I, Hunt A, Takenaka T, et al. Evaluation of the Cytochrome P 450 3A and P-glycoprotein Drug-Drug Interaction Potential of Futibatinib. Clin Pharmacol Drug Dev, 2023, 12(10):966-978. doi:10.1002/cpdd.1259. |
[61] | Morita TO, Hanada K. Physiologically based pharmacokinetic modeling of ponatinib to describe drug-drug interactions in patients with cancer. Cancer Chemother Pharmacol, 2022, 90(4):315-323. doi:10.1007/s00280-022-04466-8. |
[62] | 中国药师协会肿瘤专科药师分会, 中国抗癌协会肿瘤临床药学专业委员会, 浙江省抗癌协会肿瘤临床药学专业委员会, 等. 聚腺苷二磷酸核糖聚合酶抑制剂药物相互作用管理中国专家共识(2023版). 中华肿瘤杂志, 2023, 45(7):585-594. doi:10.3760/cma.j.cn112152-20221223-00849. |
[63] | Niemi M, Backman JT, Fromm MF, et al. Pharmacokinetic interactions with rifampicin: clinical relevance. Clin Pharmacokinet, 2003, 42(9):819-850. doi:10.2165/00003088-200342090-00003. |
[64] |
Nilles J, Weiss J, Sauter M, et al. Comprehensive in vitro analysis evaluating the variable drug-drug interaction risk of rifampicin compared to rifabutin. Arch Toxicol, 2023, 97(8):2219-2230. doi:10.1007/s00204-023-03531-2.
pmid: 37285043 |
[65] | 徐彩红, 周向梅, 范伟兴, 等. 我国结核病防治主要成就回眸及亟待解决的问题与建议. 中国防痨杂志, 2020, 42(12):1263-1267. doi:10.3969/j.issn.1000-6621.2020.12.002. |
[66] | 王歆尧, 姜美丽, 庞元捷, 等. 中国结核病疾病负担现状. 中华流行病学杂志, 2024, 45(6):857-864. doi:10.3760/cma.j.cn112338-20240311-00111. |
[67] | 国家疾病预防控制局. 关于印发《全国结核病防治规划(2024—2030年)》的通知. 国疾控传防发〔2024〕19号. 2024-12-05. |
[68] |
Sirgiovanni M, Hinterleitner C, Horger M, et al. Long-term remission of small cell lung cancer after reactivation of tuberculosis following immune-checkpoint blockade: A case report. Thorac Cancer, 2021, 12(5):699-702. doi:10.1111/1759-7714.13821.
pmid: 33458956 |
[1] | Yao Xiuyu, Du Ying, Chen Sijie, Geng Hong, Gao Lei. Common nursing problems and countermeasures or suggestions for home isolation and treatment of patients with infectious pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 681-686. |
[2] | Ou Xichao, Teng Chong, Song Yuanyuan, Zheng Yang, Chen Lei, Zhu Jun, Wang Jianguo, Pan Zhaobao, Kang Haitao, Wang Yan, Yao Hongyan, Huang Fei. Multicenter evaluation study on the application of a novel PCR fluorescence probe technology for early diagnosis of tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 687-693. |
[3] | Xie Zhongyao, Zhang Muli, Cao Tingming, Cao Yang, Sun Zhaogang. Research on the diagnostic value of specific ligand protein SMAD2-based detection method for active tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 694-700. |
[4] | Zhao Yanfeng, Tu Xia, Wang Nenhan, Chen Shuangshuang, Tian Lili, Fan Ruifang, Yu Lan, Li Jie, Li Chuanyou, Dai Xiaowei. Contribution analysis of three diagnostic methods in the etiological detection of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 701-707. |
[5] | Li Xuelian, Zhu Qingdong, Ma Yijing, Tusongjiang Maituoheti, Miriguli Maituoheti, Wang Qingfeng, Ma Liping, Chu Naihui, Nie Wenjuan, Lin Yanrong, Li Wei, Wang Jing. Analysis of incidence and risk factors for linezolid-related hematological side effects: a multicenter cohort study [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 719-726. |
[6] | Peng Hua, Cui Junwei, Shang Qiubai, Li Siqing, Peng Ruiqin. Effectiveness of a nursing intervention based on the Transtheoretical Model combined with the Health Belief Model in patients with pulmonary tuberculosis and chronic obstructive pulmonary disease [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 727-731. |
[7] | Wang Hanfei, Li Jinhao, Wen Yaxin, Xu Caihong. Analysis of diagnosis and treatment delays and influencing factors of rifampicin-resistant tuberculosis patients in China, 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 738-745. |
[8] | Shi Xiaojing, Guo Jianhua, Wang Xin, Zhao Qingran, Wang Yuhan. A study on the acceptance of preventive treatment and its influencing factors among latent tuberculosis infectors in Shijiazhuang City [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 746-752. |
[9] | Zhang Manhui, Zhang Mengdi, Lu Zheng, Li Junqi, Zheng Wenjing, Wang Xin, Huang Fei, Liu Jianjun, Yao Hongyan, Wang Qiqi. Analysis on the trends of pulmonary tuberculosis disease burden among the elderly population in China from 2005 to 2020 [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 753-759. |
[10] | Li Yuhong, Mei Jinzhou, Li Xue, Zhang Hui, Liu Xiaoqiu, Zhao Yanlin. Analysis of the epidemiological characteristics of inter-provincial migrant tuberculosis patients from 2018 to 2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 760-768. |
[11] | Shi Jie, Chang Wenjing, Zheng Danwei, Su Ruyue, Ma Xiaoguang, Zhu Yankun, Wang Shaohua, Sun Jianwei, Sun Dingyong. Screening of core genes and pathways involved in tuberculosis onset based on GEO database [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 769-778. |
[12] | Wei Xiaorui, Yu Zeyang, Yang Kun, Zhou Ke, Huang Fang, Liu Hao, Bai Lu, Liu Jiayun. Expression of liver kinase B1 in peripheral blood mononuclear cells of Mycobacterium tuberculosis-infected individuals and its correlation with interferon-γ [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 779-784. |
[13] | Li Wei, Zhou Zhichao, Zheng Jie. Trends and hotspots in multidrug-resistant tuberculosis research in China (1995—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 785-791. |
[14] | Huang Weiqiang, Yuan Chuchu, Zhang Huan, Wang Lili, Zhong Xiaofeng, Chen Xingxing, Hu Ming. Analysis of blood concentrations of intravenous antituberculosis drugs in 45 mechanically ventilated patients with severe tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(6): 798-807. |
[15] | Tuberculosis Basic Professional Branch, Chinese Antituberculosis Association. Expert consensus on the standardization of broth microdilution method for drug susceptibility testing of Mycobacterium tuberculosis in China [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 535-545. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||