Chinese Journal of Antituberculosis ›› 2025, Vol. 47 ›› Issue (5): 666-672.doi: 10.19982/j.issn.1000-6621.20240523
• Review Articles • Previous Articles Next Articles
Received:
2024-11-22
Online:
2025-05-10
Published:
2025-04-29
Contact:
Du Zongmin
E-mail:zmduams@163.com
CLC Number:
Wang Yuanning, Du Zongmin. Research progress on CRISPR/Cas molecular diagnosis of drug-resistant Mycobacterium tuberculosis[J]. Chinese Journal of Antituberculosis, 2025, 47(5): 666-672. doi: 10.19982/j.issn.1000-6621.20240523
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20240523
文献序号 | 方法 | Cas蛋白 | 靶标基因 | 样品类型 | 扩增方法 | 检测耗时 | 检出限 |
---|---|---|---|---|---|---|---|
[ | / | Cas9 | 16s rDNA | 痰液 | / | 2h | 20CFU/ml |
[ | PC | dCas9 | 16s rDNA | 基因组DNA | PCR | 1h | 5×10-13g/ml DNA |
[ | CARP | Cas9 | rpoB 531和526位点 | 基因组DNA | qRT-PCR | 4h | 1×10-4 fg DNA |
[ | / | Cas12a RR | rpsl K43R和rpsl K88R | 基因组DNA | RPA | >45min | / |
[ | TB One-Pot | Cas12b | IS6110 | 基因组DNA | CPA | 80min | 50CFU/ml |
[ | LACD | Cas12a | IS6110 | 痰液 | LAMP | 1h | 50 fg DNA |
[ | / | Cas12a | IS1081或IS6110 | 基因组DNA | RPA | 3h | 2.59~1.85μg/L DNA |
[ | / | Cas12a | rpoB 531和526位点 | 基因组DNA | 不对称RPA | 1h | 4.1CFU/ml |
[ | WATSON | Cas13a | IS1081或IS6110 | 血液 | RPA | / | / |
[ | / | Cas14a | 16s rDNA | 基因组DNA | TWJ | 1.5h | 20.71 fM DNA |
[1] | 胡鑫洋, 高静韬. 世界卫生组织《2024年全球结核病报告》解读. 结核与肺部疾病杂志, 2024, 5 (6): 500-504. doi:10.19983/j.issn.2096-8493.2024164. |
[2] | 舒薇, 刘宇红. 世界卫生组织《2023年全球结核病报告》解读. 结核与肺部疾病杂志, 2024, 5 (1): 15-19. doi:10.19983/j.issn.2096-8493.2024006. |
[3] | Liu D, Huang F, Zhang G, et al. Whole-genome sequencing for surveillance of tuberculosis drug resistance and determination of resistance level in China. Clin Microbiol Infect, 2022, 28(5):731.e9-731.e15. doi:10.1016/j.cmi.2021.09.014. |
[4] |
Harrington LB, Burstein D, Chen JS, et al. Programmed DNA destruction by miniature CRISPR-Cas 14 enzymes. Science, 2018, 362(6416):839-842. doi:10.1126/science.aav4294.
pmid: 30337455 |
[5] |
Telenti A, Imboden P, Marchesi F, et al. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet, 1993, 341(8846):647-650. doi:10.1016/0140-6736(93)90417-f.
pmid: 8095569 |
[6] | Ramaswamy S, Musser JM. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuber Lung Dis, 1998, 79(1):3-29. doi:10.1054/tuld.1998.0002. |
[7] | Vilchèze C, Jacobs WR Jr. Resistance to Isoniazid and Ethionamide in Mycobacterium tuberculosis: Genes, Mutations, and Causalities. Microbiol Spectr, 2014, 2(4):MGM2-0014-2013. doi:10.1128/microbiolspec.MGM2-0014-2013. |
[8] | Hazbón MH, Brimacombe M, Bobadilla del Valle M, et al. Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2006, 50(8):2640-2649. doi:10.1128/AAC.00112-06. |
[9] | van Doorn HR, Kuijper EJ, van der Ende A, et al. The susceptibility of Mycobacterium tuberculosis to isoniazid and the Arg-->Leu mutation at codon 463 of katG are not associated. J Clin Microbiol, 2001, 39(4):1591-1594. doi:10.1128/JCM.39.4.1591-1594.2001. |
[10] |
Rozwarski DA, Grant GA, Barton DH, et al. Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science, 1998, 279(5347):98-102. doi:10.1126/science.279.5347.98.
pmid: 9417034 |
[11] | Mokrousov I, Narvskaya O, Otten T, et al. High prevalence of KatG Ser315Thr substitution among isoniazid-resistant Mycobacterium tuberculosis clinical isolates from northwestern Russia, 1996 to 2001. Antimicrob Agents Chemother, 2002, 46(5):1417-1424. doi:10.1128/AAC.46.5.1417-1424.2002. |
[12] |
Müller B, Streicher EM, Hoek KG, et al. inhA promoter mutations: a gateway to extensively drug-resistant tuberculosis in South Africa?. Int J Tuberc Lung Dis, 2011, 15(3):344-351.
pmid: 21333101 |
[13] |
Lee AS, Lim IH, Tang LL, et al. Contribution of kasA analysis to detection of isoniazid-resistant Mycobacterium tuberculosis in Singapore. Antimicrob Agents Chemother, 1999, 43(8):2087-2089. doi:10.1128/AAC.43.8.2087.
pmid: 10428945 |
[14] |
Kelley CL, Rouse DA, Morris SL. Analysis of ahpC gene mutations in isoniazid-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother, 1997, 41(9):2057-2058. doi:10.1128/AAC.41.9.2057.
pmid: 9303417 |
[15] |
Sreevatsan S, Pan X, Zhang Y, et al. Analysis of the oxyR-ahpC region in isoniazid-resistant and -susceptible Mycobacterium tuberculosis complex organisms recovered from diseased humans and animals in diverse localities. Antimicrob Agents Chemother, 1997, 41(3):600-606. doi:10.1128/AAC.41.3.600.
pmid: 9056000 |
[16] | World Health Organization. WHO consolidated guidelines on tuberculosis: module 3: diagnosis: rapid diagnostics for tuberculosis detection, 2021 update. Geneva:World Health Organization, 2021. |
[17] | de Vos M, David A, Duraisamy K, et al. Accuracy of cobas MTB and MTB-RIF/INH for Detection of Mycobacterium tuberculosis and Drug Resistance. J Mol Diagn, 2024, 26(8):708-718. doi:10.1016/j.jmoldx.2024.05.004. |
[18] |
Makarova KS, Haft DH, Barrangou R, et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol, 2011, 9(6):467-477. doi:10.1038/nrmicro2577.
pmid: 21552286 |
[19] |
Shmakov S, Smargon A, Scott D, et al. Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol, 2017, 15(3):169-182. doi:10.1038/nrmicro.2016.184.
pmid: 28111461 |
[20] | Jiang H, Li Y, Lv X, et al. Recent advances in cascade isothermal amplification techniques for ultra-sensitive nucleic acid detection. Talanta, 2023, 260:124645. doi:10.1016/j.talanta.2023.124645. |
[21] | Zhou M, Li X, Wen H, et al. The construction of CRISPR/Cas9-mediated FRET 16S rDNA sensor for detection of Mycobacterium tuberculosis. Analyst, 2023, 148(10):2308-2315. doi:10.1039/d3an00462g. |
[22] | Zhang Y, Qian L, Wei W, et al. Paired Design of dCas 9 as a Systematic Platform for the Detection of Featured Nucleic Acid Sequences in Pathogenic Strains. ACS Synth Biol, 2017, 6(2):211-216. doi:10.1021/acssynbio.6b00215. |
[23] | Augustin L, Agarwal N. Designing a Cas9/gRNA-assisted quantitative Real-Time PCR (CARP) assay for identification of point mutations leading to rifampicin resistance in the human pathogen Mycobacterium tuberculosis. Gene, 2023, 857:147173. doi:10.1016/j.gene.2023.147173. |
[24] | Liu P, Wang X, Liang J, et al. A Recombinase Polymerase Amplification-Coupled Cas12a Mutant-Based Module for Efficient Detection of Streptomycin-Resistant Mutations in Mycobacterium tuberculosis. Front Microbiol, 2022,12:796916. doi:10.3389/fmicb.2021.796916. |
[25] | Peng L, Fang T, Cai Q, et al. Rapid detection of Mycobacterium tuberculosis in sputum using CRISPR-Cas12b combined with cross-priming amplification in a single reaction. J Clin Microbiol, 2024, 62(1):e0092323. doi:10.1128/jcm.00923-23. |
[26] |
Wang Y, Li J, Li S, et al. LAMP-CRISPR-Cas12-based diagnostic platform for detection of Mycobacterium tuberculosis complex using real-time fluorescence or lateral flow test. Mikrochim Acta, 2021, 188(10):347. doi:10.1007/s00604-021-04985-w.
pmid: 34542728 |
[27] | Xu H, Zhang X, Cai Z, et al. An Isothermal Method for Sensitive Detection of Mycobacterium tuberculosis Complex Using Clustered Regularly Interspaced Short Palindromic Repeats/Cas12a Cis and Trans Cleavage. J Mol Diagn, 2020, 22(8):1020-1029. doi:10.1016/j.jmoldx.2020.04.212. |
[28] | Cao G, Yang N, Xiong Y, et al. Completely Free from PAM Limitations: Asymmetric RPA with CRISPR/Cas12a for Nucleic Acid Assays. ACS Sens, 2023, 8(12):4655-4663. doi:10.1021/acssensors.3c01686. |
[29] | Thakku SG, Lirette J, Murugesan K, et al. Genome-wide tiled detection of circulating Mycobacterium tuberculosis cell-free DNA using Cas13. Nat Commun, 2023, 14(1):1803. doi:10.1038/s41467-023-37183-8. |
[30] | Chen M, Jiang X, Hu Q, et al. Toehold-Containing Three-Way Junction-Initiated Multiple Exponential Amplification and CRISPR/Cas14a Assistant Magnetic Separation Enhanced Visual Detection of Mycobacterium Tuberculosis. ACS Sens, 2024, 9(1):62-72. doi:10.1021/acssensors.3c01622. |
[31] |
Lan H, Shu W, Jiang D, et al. Cas-based bacterial detection: recent advances and perspectives. Analyst, 2024, 149(5):1398-1415. doi:10.1039/d3an02120c.
pmid: 38357966 |
[32] |
Chen JS, Ma E, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 2018, 360(6387):436-439. doi:10.1126/science.aar6245.
pmid: 29449511 |
[33] | Pandya K, Jagani D, Singh N. CRISPR-Cas Systems: Programmable Nuclease Revolutionizing the Molecular Diagnosis. Mol Biotechnol, 2024, 66(8):1739-1753. doi:10.1007/s12033-023-00819-7. |
[34] |
Molina Vargas AM, Sinha S, Osborn R, et al. New design strategies for ultra-specific CRISPR-Cas13a-based RNA detection with single-nucleotide mismatch sensitivity. Nucleic Acids Res, 2024, 52(2):921-939. doi:10.1093/nar/gkad1132.
pmid: 38033324 |
[35] |
Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, 2017, 356(6336):438-442. doi:10.1126/science.aam9321.
pmid: 28408723 |
[1] | Tuberculosis Basic Professional Branch, Chinese Antituberculosis Association. Expert consensus on the standardization of broth microdilution method for drug susceptibility testing of Mycobacterium tuberculosis in China [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 535-545. |
[2] | Wu Zhuhua, Wang Yong, Lai Xiaoyu, Ji Liwei, Chen Ruiming, LYU Chunfang, Xu Liuyue, Guo Huixin, Chen Yuhui, Liang Hongdi, Liu Shengyuan, Zhong Xinguang, Chen Xunxun. Evaluation of the diagnostic performance of the MiniDock MTB Test for rapid tuberculosis detection [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 577-581. |
[3] | Sun Xiaoke, Wei Jinxing, Zhang Chunyan, Liang Ruixia, Shi Huimin, Ruan Xianglin, Duan Hongfei. The value of nanopore-targeted sequencing technology in the diagnosis of granulomatous diseases in formalin-fixed paraffin-embedded tissues [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 582-588. |
[4] | Yao Mingxu, Wang Zeqi, Song Ruixue, Jia Hongyan, Sun Qi, Zhang Lanyue, Du Boping, Zhang Zongde, Wang Wen, Wu Liang, Pan Liping. The performance of Mycobacterium tuberculosis-specific antigens-induced cytokines in the diagnosis of tuberculosis among HIV-infected individuals [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 605-612. |
[5] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[6] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[7] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[8] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[9] | Zhang Peize, Gao Qian, Deng Guofang. [18F]FDT-PET-CT technology that may bring revolutionary changes to tuberculosis clinical research [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 262-265. |
[10] | Jia Hui, Jing Hui, Ling Xiaojie, Wang Yan, Li Xuezheng. The diagnostic value of GeneXpert MTB/RIF Ultra in detecting sputum samples for newly diagnosed pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 298-304. |
[11] | Shi Yuru, Gu Dejian, Wu Jing, Liu Ting, Qin Linghan, Yue Li, Qi Yingjie. Diagnostic value of probe capture-based targeted next-generation sequencing and metagenomic next-generation sequencing for detecting Mycobacterium tuberculosis in bronchoalveolar lavage fluid [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 305-311. |
[12] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[13] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[14] | Yan Guangxuan, Wang Xueyu, Wang Yujin, Lan Tinglong, Nie Wenjuan. Diagnostic value of using metagenomic second-generation sequencing on suspected osteoarticular tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 175-180. |
[15] | You Chengdong, Zhu Ling, Li Peibo. Research progress on serum trace elements in the development and nutritional support of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 218-223. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||