Chinese Journal of Antituberculosis ›› 2025, Vol. 47 ›› Issue (5): 660-665.doi: 10.19982/j.issn.1000-6621.20240548
• Review Articles • Previous Articles Next Articles
Yang Tingyu1, Sarina 1, Wang Furong1,2, Chen Chen2, Zheng Lanbing1,2()
Received:
2024-12-05
Online:
2025-05-10
Published:
2025-04-29
Contact:
Zheng Lanbing
E-mail:lanbingzheng@yeah.net
Supported by:
CLC Number:
Yang Tingyu, Sarina , Wang Furong, Chen Chen, Zheng Lanbing. Research progress of nanomaterials in the treatment of tuberculosis[J]. Chinese Journal of Antituberculosis, 2025, 47(5): 660-665. doi: 10.19982/j.issn.1000-6621.20240548
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20240548
[1] | World Health Organization.Global tuberculosis report 2024. Geneva: World Health Organization, 2024. |
[2] | 胡鑫洋, 高静韬. 世界卫生组织《2024年全球结核病报告》解读. 结核与肺部疾病杂志, 2024, 5(6): 500-504. doi:10.19983/j.issn.2096-8493.2024164. |
[3] | 舒薇, 刘宇红. 笃志创新躬行致远: 世界卫生组织《2023年全球结核病报告》结核病科学研究章节解读. 中国防痨杂志, 2024, 46(6): 613-617. doi:10.19982/j.issn.1000-6621.20240159. |
[4] | Nair A, Greeny A, Nandan A, et al. Advanced drug delivery and therapeutic strategies for tuberculosis treatment. J Nanobiotechnology, 2023, 21(1): 414. doi:10.1186/s12951-023-02156-y. |
[5] | 田娜, 褚洪迁, 孙照刚. 纳米药物递送系统在结核病治疗中的研究进展. 中国防痨杂志, 2022, 44(7): 732-737. doi:10.19982/j.issn.1000-6621.20220036. |
[6] | Bourguignon T, Godinez-Leon JA, Gref R. Nanosized Drug Delivery Systems to Fight Tuberculosis. Pharmaceutics, 2023, 15(2): 393. doi:10.3390/pharmaceutics15020393. |
[7] | 林倩妃, 范书豪, 皮江. 纳米材料在皮肤结核病诊疗中的潜在应用. 广东医科大学学报, 2024, 42(3): 227-240. doi:10.3969/j.issn.1005-4057.2024.03.001. |
[8] | 戴桂琴, 何卓俊, 刘德亮, 等. 纳米材料在结核病诊疗中的应用. 生物化学与生物物理进展, 2023, 50(8): 1841-1854. doi:10.16476/j.pibb.2022.0392. |
[9] | Tăbăran AF, Matea CT, Mocan T, et al. Silver Nanoparticles for the Therapy of Tuberculosis. Int J Nanomedicine, 2020, 15: 2231-2258. doi:10.2147/IJN.S241183. |
[10] | Behzad F, Sefidgar E, Samadi A. An Overview of Zinc Oxide Nanoparticles Produced by Plant Extracts for Anti-tuberculosis Treatments. Curr Med Chem, 2022, 29(1): 86-98. doi:10.2174/0929867328666210614122109. |
[11] |
Heidary M, Zaker Bostanabad S, Amini SM, et al. The Anti-Mycobacterial Activity Of Ag, ZnO, And Ag-ZnO Nanoparticles Against MDR-And XDR-Mycobacterium tuberculosis. Infect Drug Resist, 2019, 12: 3425-3435. doi:10.2147/IDR.S221408.
pmid: 31807033 |
[12] | Vidyasagar, Patel RR, Singh SK, et al. Facile green synthesis of silver nanoparticles derived from the medicinal plant Clerodendrum serratum and its biological activity against Mycobacterium species. Heliyon, 2024, 10(10): e31116. doi:10.1016/j.heliyon.2024.e31116. |
[13] | Chen CC, Chen YY, Yeh CC, et al. Alginate-Capped Silver Nanoparticles as a Potent Anti-mycobacterial Agent Against Mycobacterium tuberculosis. Front Pharmacol, 2021, 12: 746496. doi:10.3389/fphar.2021.746496. |
[14] | Ge X, Liang Z, Li K, et al. Selenium nanoparticles enhance mucosal immunity against Mycobacterium bovis infection. Int Immunopharmacol, 2024, 137: 112384. doi:10.1016/j.intimp.2024.112384. |
[15] | Lin W, Fan S, Liao K, et al. Engineering zinc oxide hybrid selenium nanoparticles for synergetic anti-tuberculosis treatment by combining Mycobacterium tuberculosis killings and host cell immunological inhibition. Front Cell Infect Microbiol, 2023, 12: 1074533. doi:10.3389/fcimb.2022.1074533. |
[16] | Santarelli G, Perini G, Salustri A, et al. Unraveling the potential of graphene quantum dots against Mycobacterium tuberculosis infection. Front Microbiol, 2024, 15: 1395815. doi:10.3389/fmicb.2024.1395815. |
[17] |
Mignani S, Tripathi VD, Soam D, et al. Safe Polycationic Dendrimers as Potent Oral In Vivo Inhibitors of Mycobacterium tuberculosis: A New Therapy to Take Down Tuberculosis. Biomacromolecules, 2021, 22(6): 2659-2675. doi:10.1021/acs.biomac.1c00355.
pmid: 33970615 |
[18] | Imran M, Singh S, Ahmad MN, et al. Polycationic phosphorous dendrimer potentiates multiple antibiotics against drug-resis-tant mycobacterial pathogens. Biomed Pharmacother, 2024, 173: 116289. doi:10.1016/j.biopha.2024.116289. |
[19] |
Carnero Canales CS, Marquez Cazorla JI, Marquez Cazorla RM, et al. Breaking barriers: The potential of nanosystems in antituberculosis therapy. Bioact Mater, 2024, 39: 106-134. doi:10.1016/j.bioactmat.2024.05.013.
pmid: 38783925 |
[20] | Beitzinger B, Gerbl F, Vomhof T, et al. Delivery by Dendritic Mesoporous Silica Nanoparticles Enhances the Antimicrobial Activity of a Napsin-Derived Peptide Against Intracellular Mycobacterium tuberculosis. Adv Healthc Mater, 2021, 10(14): 2100453. doi:10.1002/adhm.202100453. |
[21] | Zhu P, Cai L, Liu Q, et al. One-pot synthesis of α-Linolenic acid nanoemulsion-templated drug-loaded silica mesocomposites as efficient bactericide against drug-resistant Mycobacterium tuberculosis. Eur J Pharm Sci, 2022, 176: 106261. doi:10.1016/j.ejps.2022.106261. |
[22] | Campos Pacheco JE, Yalovenko T, Riaz A, et al. Inhalable porous particles as dual micro-nano carriers demonstrating efficient lung drug delivery for treatment of tuberculosis. J Control Release, 2024, 369:231-250. doi:10.1016/j.jconrel.2024.03.013. |
[23] | Shah S, Cristopher D, Sharma S, et al. Inhalable linezolid loaded PLGA nanoparticles for treatment of tuberculosis: Design, development and in vitro evaluation. J Drug Deliv Sci Tec, 2020, 60: 102013. doi:10.1016/j.jddst.2020.102013. |
[24] | de Castro RR, do Carmo FA, Martins C, et al. Clofazimine functionalized polymeric nanoparticles for brain delivery in the tuberculosis treatment. Int J Pharm, 2021, 602: 120655. doi:10.1016/j.ijpharm.2021.120655. |
[25] | Yang L, Chaves L, Kutscher HL, et al. An immunoregulator nanomedicine approach for the treatment of tuberculosis. Front Bioeng Biotechnol, 2023, 11: 1095926. doi:10.3389/fbioe.2023.1095926. |
[26] |
Lunn AM, Unnikrishnan M, Perrier S. Dual pH-Responsive Macrophage-Targeted Isoniazid Glycoparticles for Intracellular Tuberculosis Therapy. Biomacromolecules, 2021, 22(9): 3756-3768. doi:10.1021/acs.biomac.1c00554.
pmid: 34339606 |
[27] |
Pawde DM, Viswanadh MK, Mehata AK, et al. Mannose receptor targeted bioadhesive chitosan nanoparticles of clofazimine for effective therapy of tuberculosis. Saudi Pharm J, 2020, 28(12): 1616-1625. doi:10.1016/j.jsps.2020.10.008.
pmid: 33424254 |
[28] | Hatae AC, Roque-Borda CA, Pavan FR. Strategies for lipid-based nanocomposites with potential activity against Mycobacterium tuberculosis: Microbial resistance challenge and drug delivery trends. OpenNano, 2023, 13: 100171. doi:10.1016/j.onano.2023.100171. |
[29] | Moradi M, Vahedi F, Abbassioun A, et al. Liposomal delivery system/adjuvant for tuberculosis vaccine. Immun Inflamm Dis, 2023, 11(6): e867. doi:10.1002/iid3.867. |
[30] | Gonçalves J, Marques C, Nunes C, et al. Therapeutic Liquid Eutectic Solvents in Lipid Nanoparticles as Drug Vehicles-A Proof of Concept. Int J Mol Sci, 2023, 24(21): 15648. doi:10.3390/ijms242115648. |
[31] | Paul PK, Nakpheng T, Paliwal H, et al. Inhalable solid lipid nanoparticles of levofloxacin for potential tuberculosis treatment. Int J Pharm, 2024, 660: 124309. doi:10.1016/j.ijpharm.2024.124309. |
[32] | Bera H, Zhao C, Tian X, et al. Mannose-Decorated Solid-Lipid Nanoparticles for Alveolar Macrophage Targeted Delivery of Rifampicin. Pharmaceutics, 2024, 16(3): 429. doi:10.3390/pharmaceutics16030429. |
[33] | Pu X, Wang Y, Wang X, et al. Lipids Extracted from Mycobacterial Membrane and Enveloped PLGA Nanoparticles for Encapsulating Antibacterial Drugs Elicit Synergistic Antimicrobial Response against Mycobacteria. Mol Pharm, 2024, 21(5): 2238-2249. doi:10.1021/acs.molpharmaceut.3c01001. |
[34] | Caggiano NJ, Armstrong MS, Georgiou JS, et al. Formulation and Scale-up of Delamanid Nanoparticles via Emulsification for Oral Tuberculosis Treatment. Mol Pharm, 2023, 20(9): 4546-4558. doi:10.1021/acs.molpharmaceut.3c00240. |
[35] | Menon PM, Chandrasekaran N, C GPD, et al. Multi-drug loaded eugenol-based nanoemulsions for enhanced anti-mycobacterial activity. RSC Med Chem, 2023, 14(3): 433-443. doi:10.1039/d2md00320a. |
[36] | Suman SK, Chandrasekaran N, Priya Doss CG. Micro-nanoemulsion and nanoparticle-assisted drug delivery against drug-resistant tuberculosis: recent developments. Clin Microbiol Rev, 2023, 36(4): e0008823. doi:10.1128/cmr.00088-23. |
[37] | Li H, Ding Y, Huang J, et al. Angiopep-2 Modified Exosomes Load Rifampicin with Potential for Treating Central Nervous System Tuberculosis. Int J Nanomedicine, 2023, 18: 489-503. doi:10.2147/IJN.S395246. |
[38] | Wang J, Chen D, Ho EA. Challenges in the development and establishment of exosome-based drug delivery systems. J Control Release, 2021, 329: 894-906. doi:10.1016/j.jconrel.2020.10.020 |
[39] | Ahmed W, Mushtaq A, Ali S, et al. Engineering Approaches for Exosome Cargo Loading and Targeted Delivery: Biological versus Chemical Perspectives. ACS Biomater Sci Eng, 2024, 10(10): 5960-5976. doi:10.1021/acsbiomaterials.4c00856. |
[40] | Sun YF, Pi J, Xu JF. Emerging Role of Exosomes in Tuberculosis: From Immunity Regulations to Vaccine and Immunotherapy. Front Immunol, 2021, 12: 628973. doi:10.3389/fimmu.2021.628973. |
[41] | Sun X, Li W, Zhao L, et al. Current landscape of exosomes in tuberculosis development, diagnosis, and treatment applications. Front Immunol, 2024, 15: 1401867. doi:10.3389/fimmu.2024.1401867. |
[42] | Lu M, Li S, Liu Y, et al. Advances in phototherapy for infectious diseases. Nano Today, 2024, 57: 102327. doi:10.1016/j.nantod.2024.102327. |
[43] | Yu B, Liu Q, Sun J, et al. Phototherapy-based multifunctional nanoplatform for synergistic therapy against drug resistance bacteria: Progress, advances and challenges. Chem Eng J, 2024, 487: 150705. doi:10.1016/j.cej.2024.150705. |
[44] | Manivasagan P, Thambi T, Joe A, et al. Progress in nanomaterial-based synergistic photothermal-enhanced chemodynamic therapy in combating bacterial infections. Prog Mater Sci, 2024, 144: 101292. doi:10.1016/j.pmatsci.2024.101292. |
[45] | He X, Lv Y, Lin Y, et al. Platinum Nanoparticles Regulated V2C MXene Nanoplatforms with NIR-Ⅱ Enhanced Nanozyme Effect for Photothermal and Chemodynamic Anti-Infective Therapy. Adv Mater, 2024, 36(25): 2400366. doi:10.1002/adma.202400366. |
[46] | He C, Feng P, Hao M, et al. Nanomaterials in Antibacterial Photodynamic Therapy and Antibacterial Sonodynamic Therapy. Adv Funct Mater, 2024, 34(38): 2402588. doi:10.1002/adfm.202402588. |
[47] | Elian C, Méallet R, Versace DL. Photoactive Dye-Loaded Polymer Materials: A New Cutting Edge for Antibacterial Photodynamic Therapy. Adv Funct Mater, 2024, 34(44): 2407228. doi:10.1002/adfm.202407228. |
[48] | Mehnath S, Chitra K, Jeyaraj M. An all-in-one nanomaterial derived from rGO-MoS2 for photo/chemotherapy of tuberculosis. New J Chem, 2022, 46: 6433-6445. doi:10.1039/d1nj03549e. |
[49] |
Tian N, Duan H, Cao T, et al. Macrophage-targeted nanoparticles mediate synergistic photodynamic therapy and immunotherapy of tuberculosis. RSC Adv, 2023, 13(3): 1727-1737. doi:10.1039/d2ra06334d.
pmid: 36712647 |
[50] | Li B, Wang W, Zhao L, et al. Photothermal therapy of tuberculosis using targeting pre-activated macrophage membrane-coated nanoparticles. Nat Nanotechnol, 2024, 19(6): 834-845. doi:10.1038/s41565-024-01618-0. |
[51] | Cai Q, Tian Y, Shubhra QTH. Pre-activated macrophage membrane-encased aggregation-induced emission featuring nanoparticles: a novel possibility for tuberculosis treatment. Signal Transduct Target Ther, 2024, 9(1): 164. doi:10.1038/s41392-024-01855-8. |
[1] | Tuberculosis Basic Professional Branch, Chinese Antituberculosis Association. Expert consensus on the standardization of broth microdilution method for drug susceptibility testing of Mycobacterium tuberculosis in China [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 535-545. |
[2] | Senior Department of Tuberculosis, the 8th Medical Center of Chinese PLA General Hospital, Editorial Board of Chinese Journal of Antituberculosis, Basic and Clinical Speciality Committees of Tuberculosis Control Branch of China International Exchange and Promotive Association for Medical and Health Care. Expert consensus on the diagnosis and treatment of urological tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 546-558. |
[3] | Liu Qiao, Li Zhongqi, Zhu Limei, Lu Wei. Study on the status, problems and countermeasures of tuberculosis control service system in China [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 559-568. |
[4] | Liu Fangchao, Zhang Di, Mi Fengling, Li Zihui, Huang Hairong, Pan Liping, Shi Guangli, Jiang Guanglu, Pan Junhua. Construction of a biosafety management indicator system for tuberculosis clinical testing laboratories [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 569-576. |
[5] | Wu Zhuhua, Wang Yong, Lai Xiaoyu, Ji Liwei, Chen Ruiming, LYU Chunfang, Xu Liuyue, Guo Huixin, Chen Yuhui, Liang Hongdi, Liu Shengyuan, Zhong Xinguang, Chen Xunxun. Evaluation of the diagnostic performance of the MiniDock MTB Test for rapid tuberculosis detection [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 577-581. |
[6] | Yao Mingxu, Wang Zeqi, Song Ruixue, Jia Hongyan, Sun Qi, Zhang Lanyue, Du Boping, Zhang Zongde, Wang Wen, Wu Liang, Pan Liping. The performance of Mycobacterium tuberculosis-specific antigens-induced cytokines in the diagnosis of tuberculosis among HIV-infected individuals [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 605-612. |
[7] | Cheng Wen, Zhu Hui, Fu Lei, Zhang Weiyan, Zhang Liqun, Lu Yu. Development and application of an HPLC-MS/MS method for simultaneous determination of bedaquiline, pretomanid, and linezolid in plasma [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 613-622. |
[8] | Zhao Lingjuan, Liu Haoran, Nie Wenjuan, Wang Wei. A preliminary study on the role of miRNA-451a in the pathogenesis of disseminated tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 623-628. |
[9] | Huang Huimin, Wang Lei, Cheng Liping, Sun Qin, Wang Wenjuan, Yang Hua. Study on the association between single nucleotide polymorphisms in TMEM173,IFNGR1,IFNGR2, and IRF8 genes and susceptibility to tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 629-638. |
[10] | Hu Yijun, Xu Yiting, Jian Ronghua, Wu Huizhong, Su Jing, Xiao Jianpeng, Jiang Chenqi, Liu Tao, Wang Jiawen, Chen Liang. Spatio-temporal analysis and risk assessment of multidrug-resistant tuberculosis in Guangdong Province, 2014—2019 [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 639-646. |
[11] | Li Ting, Xia Lan, Liu Shuang, Wang Danxia, Lu Jia, Yu Yifan, Cheng Qianqian. Short-term effect analysis of intervention measures to strengthen patient registration management in tuberculosis designated medical institutions at provincial and municipal levels in Sichuan Province [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 647-652. |
[12] | Wang Lei, Chen Chidao, Su Lianzheng, Li Lingwei, Wang Xinmiao, Wang Peng, Huang Zhonghao. Causality between coronavirus disease 2019 and tuberculosis in Europeans: a two-sample Mendelian randomization study [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 653-659. |
[13] | Wang Yuanning, Du Zongmin. Research progress on CRISPR/Cas molecular diagnosis of drug-resistant Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 666-672. |
[14] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[15] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||