| [1] |
Wang J, Zhou Y, Zhang H, et al. Pathogenesis of allergic diseases and implications for therapeutic interventions. Signal Transduct Target Ther, 2023, 8(1):138. doi:10.1038/s41392-023-01344-4.
|
| [2] |
Pawankar R. The unmet global health need of severe and complex allergies: meeting the challenge. World Allergy Organ J, 2012, 5(2):20-21. doi:10.1097/WOX.0b013e31824a5552.
|
| [3] |
Pawankar R. Allergic diseases and asthma: a global public health concern and a call to action. World Allergy Organ J, 2014, 7(1):12. doi:10.1186/1939-4551-7-12.
|
| [4] |
Murrison LB, Brandt EB, Myers JB, et al. Environmental exposures and mechanisms in allergy and asthma development. J Clin Invest, 2019, 129(4):1504-1515. doi:10.1172/JCI124612.
pmid: 30741719
|
| [5] |
周晓鹰, 唐颖娟, 魏涛, 等. 环境因素和过敏性疾病. 常州大学学报(自然科学版), 2019, 31(4):76-85. doi:10.3969/j.issn.2095-0411.2019.04.011.
|
| [6] |
D'Amato G, Chong-Neto HJ, Monge Ortega OP, et al. The effects of climate change on respiratory allergy and asthma induced by pollen and mold allergens. Allergy, 2020, 75(9):2219-2228. doi:10.1111/all.14476.
pmid: 32589303
|
| [7] |
Akdis M, Verhagen J, Taylor A, et al. Immune responses in healthy and allergic individuals are characterized by a fine balance between allergen-specific T regulatory 1 and T helper 2 cells. J Exp Med, 2004, 199(11):1567-1575. doi:10.1084/jem.20032058.
pmid: 15173208
|
| [8] |
Taylor A, Verhagen J, Blaser K, et al. Mechanisms of immune suppression by interleukin-10 and transforming growth factor-beta: the role of T regulatory cells. Immunology, 2006, 117(4):433-442. doi:10.1111/j.1365-2567.2006.02321.x.
|
| [9] |
Verhagen J, Blaser K, Akdis CA, et al. Mechanisms of allergen-specific immunotherapy: T-regulatory cells and more. Immunol Allergy Clin North Am, 2006, 26(2):207-231, vi. doi:10.1016/j.iac.2006.02.008.
|
| [10] |
Fujita H, Soyka MB, Akdis M, et al. Mechanisms of allergen-specific immunotherapy. Clin Transl Allergy, 2012, 2(1):2. doi:10.1186/2045-7022-2-2.
pmid: 22409879
|
| [11] |
Eggel A, Pennington LF, Jardetzky TS. Therapeutic monoclonal antibodies in allergy: Targeting IgE, cytokine, and alarmin pathways. Immunol Rev, 2024, 328(1):387-411. doi:10.1111/imr.13380.
pmid: 39158477
|
| [12] |
Vitte J, Vibhushan S, Bratti M, et al. Allergy, Anaphylaxis, and Nonallergic Hypersensitivity: IgE, Mast Cells, and Beyond. Med Princ Pract, 2022, 31(6):501-515. doi:10.1159/000527481.
|
| [13] |
Noval Rivas M, Burton OT, Wise P, et al. Regulatory T cell reprogramming toward a Th2-cell-like lineage impairs oral tolerance and promotes food allergy. Immunity, 2015, 42(3):512-523. doi:10.1016/j.immuni.2015.02.004.
pmid: 25769611
|
| [14] |
Koenig JFE, Knudsen NPH, Phelps A, et al. Type 2-polarized memory B cells hold allergen-specific IgE memory. Sci Transl Med, 2024, 16(733):eadi0944. doi:10.1126/scitranslmed.adi0944.
|
| [15] |
Amoroso M, Langgartner D, Lowry CA, et al. Rapidly Growing Mycobacterium Species: The Long and Winding Road from Tuberculosis Vaccines to Potent Stress-Resilience Agents. Int J Mol Sci, 2021, 22(23):12938. doi:10.3390/ijms222312938.
|
| [16] |
Bazzi S, Modjtahedi H, Mudan S, et al. Analysis of the immunomodulatory properties of two heat-killed mycobacterial preparations in a human whole blood model. Immunobiology, 2015, 220(12):1293-1304. doi:10.1016/j.imbio.2015.07.015.
pmid: 26253276
|
| [17] |
Andrade MR, Amaral EP, Ribeiro SC, et al. Pathogenic Mycobacterium bovis strains differ in their ability to modulate the proinflammatory activation phenotype of macrophages. BMC Microbiol, 2012, 12:166. doi:10.1186/1471-2180-12-166.
|
| [18] |
Flynn JL, Goldstein MM, Chan J, et al. Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity, 1995, 2(6):561-572. doi:10.1016/1074-7613(95)90001-2.
pmid: 7540941
|
| [19] |
Seder RA, Gazzinelli R, Sher A, et al. Interleukin 12 acts directly on CD4+ T cells to enhance priming for interferon gamma production and diminishes interleukin 4 inhibition of such priming. Proc Natl Acad Sci U S A, 1993, 90(21):10188-10192. doi:10.1073/pnas.90.21.10188.
|
| [20] |
Sasindran SJ, Torrelles JB. Mycobacterium Tuberculosis Infection and Inflammation: what is Beneficial for the Host and for the Bacterium?. Front Microbiol, 2011, 2:2. doi:10.3389/fmicb.2011.00002.
pmid: 21687401
|
| [21] |
Le Bert N, Chain BM, Rook G, et al. DC priming by M.vaccae inhibits Th 2 responses in contrast to specific TLR2 priming and is associated with selective activation of the CREB pathway. PLoS One, 2011, 6(4):e18346. doi:10.1371/journal.pone.0018346.
|
| [22] |
王春芳, 邱佳熠, 姜秀云, 等. 母牛分枝杆菌感染引起小鼠细胞免疫应答的特征分析. 中国预防兽医学报, 2016, 38(12):981-984. doi:10.3969/j.issn.1008-0425.2016.12.13.
|
| [23] |
Rodríguez-Güell E, Agustí G, Corominas M, et al. Mice with pulmonary tuberculosis treated with Mycobacterium vaccae develop strikingly enhanced recall gamma interferon responses to M.vaccae cell wall skeleton. Clin Vaccine Immunol, 2008, 15(5):893-896. doi:10.1128/CVI.00477-07.
pmid: 18337379
|
| [24] |
Skinner MA, Yuan S, Prestidge R, et al. Immunization with heat-killed Mycobacterium vaccae stimulates CD8+ cytotoxic T cells specific for macrophages infected with Mycobacterium tuberculosis. Infect Immun, 1997, 65(11):4525-4530. doi:10.1128/iai.65.11.4525-4530.1997.
|
| [25] |
王涛, 李红. 母牛分支杆菌菌苗辅助治疗初治肺结核的疗效分析. 中外医疗, 2014(22):28-29, 38. doi:10.3969/j.issn.1674-0742.2014.22.013.
|
| [26] |
吴碧彤, 谭守勇, 蔡智群, 等. 母牛分枝杆菌菌苗免疫辅助治疗老年初治空洞型肺结核的疗效分析. 临床肺科杂志, 2013, 18(7):1267-1270. doi:10.3969/j.issn.1009-6663.2013.07.052.
|
| [27] |
刘明. 微卡联合莫西沙星治疗复治涂阳肺结核的疗效观察. 临床肺科杂志, 2013, 18(2):351-352. doi:10.3969/j.issn.1009-6663.2013.02.081.
|
| [28] |
Yao YE, Zhang JH, Chen XJ, et al. Regulation of γδT17 cells by Mycobacterium vaccae through interference with Notch/Jagged1 signaling pathway. Braz J Med Biol Res, 2020, 53(11):e9551. doi:10.1590/1414-431X20209551.
pmid: 33053115
|
| [29] |
Xiao H, Zhang QN, Sun QX, et al. Effects of Mycobacterium vaccae Aerosol Inhalation on Airway Inflammation in Asthma Mouse Model. J Aerosol Med Pulm Drug Deliv, 2021, 34(6):374-382. doi:10.1089/jamp.2021.0008.
|
| [30] |
Zhang QN, Xiao H, Fang LT, et al. Aerosol inhalation of Mycobacterium vaccae ameliorates airway structural remodeling in chronic asthma mouse model. Exp Lung Res, 2022, 48(7-8):239-250. doi:10.1080/01902148.2022.2115166.
|
| [31] |
Chen X, Jiang X, Lu Y, et al. Aerosol inhalation of Mycobacterium bovis can reduce the Th 2 dominant immune response induced by ovalbumin sensitization. Am J Transl Res, 2022, 14(5):3430-3438.
|
| [32] |
方莉婷, 章谦男, 肖欢, 等. 雾化吸入母牛分枝杆菌减轻哮喘小鼠氧化应激水平. 广西医科大学学报, 2022, 39(12):1931-1936. doi:10.16190/j.cnki.45-1211/r.2022.12.010.
|
| [33] |
章谦男. 雾化吸入母牛分枝杆菌通过抑制Wnt/β-catenin信号通路改善哮喘小鼠气道重塑. 南宁:广西医科大学, 2022. doi:10.27038/d.cnki.ggxyu.2022.001257.
|
| [34] |
Yao Y, Chen X, Qin C, et al. Mycobacterium Vaccae Regulate γδT17 and γδTreg Cells in Mice Asthmatic Lung. Iran J Immunol, 2022, 19(3):243-254. doi:10.22034/iji.2022.94460.2311.
|
| [35] |
周文勤, 刘荣玉, 汪伟民. 注射用母牛分枝杆菌对支气管哮喘病人的辅助治疗作用. 中国新药与临床杂志, 2007, 26(5):375-377. doi:10.3969/j.issn.1007-7669.2007.05.014.
|
| [36] |
孙瑞琳, 金发光, 楚东岭, 等. 母牛分枝杆菌联合沙丁胺醇治疗支气管哮喘患者的临床研究. 现代生物医学进展, 2009, 9(8): 1501-1502.
|
| [37] |
谢强敏, 卞如濂, 吴康松, 等. 微卡对致敏小鼠气道炎症和Th1/Th2比例变化的影响. 中华结核和呼吸杂志, 2002, 25(8): 488-491. doi:10.3760/j:issn:1001-0939-.2002.08.011.
|
| [38] |
赖乐锦. 灭活母牛分支杆菌不同给药途径对哮喘小鼠气道炎症作用的比较. 南宁:广西医科大学, 2022. doi:10.27038/d.cnki.ggxyu.2022.000757.
|
| [39] |
蒋子涵. 母牛分枝杆菌菌体蛋白对变应性鼻炎小鼠模型的治疗作用研究. 成都:四川大学, 2021. doi:10.27342/d.cnki.gscdu.2021.006039.
|
| [40] |
Sinha S, Lin G, Ferenczi K. The skin microbiome and the gut-skin axis. Clin Dermatol, 2021, 39(5):829-839. doi:10.1016/j.clindermatol.2021.08.021.
pmid: 34785010
|
| [41] |
Ricklin Gutzwiller ME, Reist M, Peel JE, et al. Intradermal injection of heat-killed Mycobacterium vaccae in dogs with atopic dermatitis: a multicentre pilot study. Vet Dermatol, 2007, 18(2):87-93. doi:10.1111/j.1365-3164.2007.00579.x.
|
| [42] |
Arkwright PD, David TJ. Intradermal administration of a killed Mycobacterium vaccae suspension (SRL 172) is associated with improvement in atopic dermatitis in children with moderate-to-severe disease. J Allergy Clin Immunol, 2001, 107(3):531-534. doi:10.1067/mai.2001.113081.
|
| [43] |
Arkwright PD, David TJ. Effect of Mycobacterium vaccae on atopic dermatitis in children of different ages. Br J Dermatol, 2003, 149(5):1029-1034. doi:10.1111/j.1365-2133.2003.05557.x.
|
| [44] |
Brothers S, Asher MI, Jaksic M, et al. Effect of a Mycobacterium vaccae derivative on paediatric atopic dermatitis: a randomized, controlled trial. Clin Exp Dermatol, 2009, 34(7):770-775. doi:10.1111/j.1365-2230.2008.03153.x.
|
| [45] |
王淑琴, 徐会敏, 王晓健. 注射用母牛分枝杆菌菌苗试用于顽固性荨麻疹疗效观察. 华北国防医药, 2009, 21(3): 28. doi:10.3969/j.issn.2095-140X.2009.03.014.
|