Chinese Journal of Antituberculosis ›› 2021, Vol. 43 ›› Issue (4): 404-408.doi: 10.3969/j.issn.1000-6621.2021.04.018
• Review Articles • Previous Articles Next Articles
Received:
2021-01-03
Online:
2021-04-10
Published:
2021-04-09
Contact:
LU Yu
E-mail:luyu4876@hotmail.com
LIU Hai-ting, LU Yu. Progress in pharmacodynamic screening of anti-tuberculosis drug combination[J]. Chinese Journal of Antituberculosis, 2021, 43(4): 404-408. doi: 10.3969/j.issn.1000-6621.2021.04.018
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2021.04.018
[1] | World Health Organization Regional Office for Europe. Global tuberculosis report 2020. Geneva:World Health Organization, 2020. |
[2] | World Health Organization Regional Office for Europe. Global tuberculosis report 2019. Geneva: World Health Organization, 2019. |
[3] | Caleffi-Ferracioli KR, Maltempe FG, Siqueira VL, et al. Fast detection of drug interaction in Mycobacterium tuberculosis by a checkerboard resazurin method. Tuberculosis(Edinb), 2013,93(6):660-663. doi: 10.1016/j.tube.2013.09.001. |
[4] |
Wilkinson GF, Pritchard K. In Vitro screening for drug repositioning. J Biomol Screen, 2015,20(2):167-179. doi: 10.1177/1087057114563024.
doi: 10.1177/1087057114563024 URL pmid: 25527136 |
[5] |
Brennan-Krohn T, Kirby JE. Antimicrobial Synergy Testing by the Inkjet Printer-assisted Automated Checkerboard Array and the Manual Time-kill Method. J Vis Exp, 2019,(146): doi: 10.3791/58636.
URL pmid: 31081816 |
[6] | Leber AL. Synergism testing: Broth microdilution checkerboard and broth microdilution methods. Clinical Microbiology Procedures Handbook, 2016Chapter 5.16.1-5.16.23.doi: 10.1128/9781555818814.ch5.16. |
[7] | 文亚坤, 曹萌, 邹琳, 等. 碳青霉烯类抗生素耐药铜绿假单胞菌的体外联合药敏研究. 中国抗生素杂志, 2012,37(7):536-538. doi: 10.3969/j.issn.1001-8689.2012.07.010. |
[8] |
Sweeney MT, Zurenko GE. In vitro activities of linezolid combined with other antimicrobial agents against Staphylococci, Enterococci, Pneumococci, and selected gram-negative organi-sms. Antimicrob Agents Chemother, 2003,47(6):1902-1906. doi: 10.1128/aac.47.6.1902-1906.2003.
doi: 10.1128/aac.47.6.1902-1906.2003 URL pmid: 12760865 |
[9] |
Bonapace CR, Bosso JA, Friedrich LV, et al. Comparison of methods of interpretation of checkerboard synergy testing. Diagn Microbiol Infect Dis, 2002,44(4):363-366. doi: 10.1016/s0732-8893(02)00473-x.
doi: 10.1016/s0732-8893(02)00473-x URL pmid: 12543542 |
[10] |
Dawis MA, Isenberg HD, France KA, et al. In vitro activity of gatifloxacin alone and in combination with cefepime, meropenem, piperacillin and gentamicin against multidrug-resistant organisms. J Antimicrob Chemother, 2003,51(5):1203-1211. doi: 10.1093/jac/dkg238.Epub 2003 Apr 14.
doi: 10.1093/jac/dkg238 URL pmid: 12697632 |
[11] |
Bhusal Y, Shiohira CM, Yamane N. Determination of in vitro synergy when three antimicrobial agents are combined against Mycobacterium tuberculosis. Int J Antimicrob Agents, 2005,26(4):292-297. doi: 10.1016/j.ijantimicag.2005.05.005.
doi: 10.1016/j.ijantimicag.2005.05.005 URL pmid: 16150578 |
[12] |
Hegeto LA, Caleffi-Ferracioli KR, Nakamura-Vasconcelos SS, et al. In vitro co-mbinatory activity of piperine and anti-tuberculosis drugs in Mycobacterium tuberculosis. Tuberculosis (Edinb), 2018,111:35-40. doi: 10.1016/j.tube.2018.05.006.
doi: 10.1016/j.tube.2018.05.006 URL |
[13] |
Knazek RA, Gullino PM, Kohler PO, et al. Cell culture on artificial capillaries: an approach to tissue growth in vitro. Science, 1972,178(4056):65-66. doi: 10.1126/science.178.4056.65.
doi: 10.1126/science.178.4056.65 URL pmid: 4560879 |
[14] | 赵皎洁, 陆宇. 抗结核药物药代动力学/药效学的研究及进展. 中国防痨杂志, 2019,41(6):700-704. doi: 10.3969/j.issn.1000-6621.2019.06.020. |
[15] |
Cavaleri M, Manolis E. Hollow Fiber System Model for Tuberculosis: The European Medicines Agency Experience. Clin Infect Dis, 2015,61 Suppl 1: S1-S4. doi: 10.1093/cid/civ484.
doi: 10.1093/cid/civ484 URL |
[16] | Nightingale CH, Ambrose PG, Drusano GL, et al. Antimicrobial Pharmacodynamics in Theory and Clinical Practice, Second Edition:Antimicrobial Pharmacodynamics in Theory and Clinical Practice, Second Edition. Clin Infect Dis, 2008,46(12):1942. doi: 10.1086/588473. |
[17] |
Vaddady PK, Lee RE, Meibohm B. In vitro pharmacokinetic/pharmacodynamic models in anti-infective drug development: focus on TB. Future Med Chem, 2010,2(8):1355-1369. doi: 10.4155/fmc.10.224.
doi: 10.4155/fmc.10.224 URL pmid: 21359155 |
[18] |
Young D. Animal models of tuberculosis. Eur J Immunol, 2009,39(8):2011-2014. doi: 10.1002/eji.200939542.
doi: 10.1002/eji.200939542 URL pmid: 19672894 |
[19] |
Nuermberger E. Using animal models to develop new treatments for tuberculosis. Semin Respir Crit Care Med, 2008,29(5):542-551. doi: 10.1055/s-0028-1085705.
doi: 10.1055/s-0028-1085705 URL pmid: 18810687 |
[20] | Lenaerts AJ, Degroote MA, Orme IM. Preclinical testing of new drugs for tuberculosis: current challenges. Trends Microbio, 2008,16(2):48-54. doi: 10.1016/j.tim.2007.12.002. |
[21] |
Nuermberger E, Rosenthal I, Tyagi S, et al. Combination chemotherapy with the nitroimidazopyran PA-824 and first-line drugs in a murine model of tuberculosis. Antimicrob Agents Chemother, 2006,50(8):2621-2625. doi: 10.1128/AAC.00451-06.
doi: 10.1128/AAC.00451-06 URL pmid: 16870750 |
[22] | 李媛媛, 陆宇. 动物模型在抗结核新药药效学评价中的应用. 中国防痨杂志, 2017,39(9):1014-1017. doi: 10.3969/j.issn.1000-6621.2017.09.022. |
[23] |
Irwin SM, Prideaux B, Lyon ER, et al. Bedaquiline and Pyrazinamide Treatment Responses Are Affected by Pulmonary Lesion Heterogeneity in Mycobacterium tuberculosis Infected C3HeB/FeJ Mice. ACS Infect Dis, 2016,2(4):251-267. doi: 10.1021/acsinfecdis.5b00127.
doi: 10.1021/acsinfecdis.5b00127 URL pmid: 27227164 |
[24] |
Henao-Tamayo M, Shanley CA, Verma D, et al. The Efficacy of the BCG Vaccine against Newly Emerging Clinical Strains of Mycobacterium tuberculosis. PLoS One, 2015,10(9):e0136500. doi: 10.1371/journal.pone.0136500.
doi: 10.1371/journal.pone.0136500 URL pmid: 26368806 |
[25] |
Furin JJ, Du Bois J, van Brakel E, et al. Early Bactericidal Activity of AZD5847 in Patients with Pulmonary Tuberculosis. Antimicrob Agents Chemother, 2016,60(11):6591-6599. doi: 10.1128/AAC.01163-16.
doi: 10.1128/AAC.01163-16 URL pmid: 27550361 |
[26] |
Gillespie SH, Gosling RD, Uiso Leonard, et al. Early bactericidal activity of a moxifloxacin and isoniazid combination in smear-positive pulmonary tuberculosis. J Antimicrob Chemother, 2005,56(6):1169-1171. doi: 10.1093/jac/dki376.
doi: 10.1093/jac/dki376 URL pmid: 16223939 |
[27] |
Burger DA, Schall R, Chen DG. Robust Bayesian nonlinear mixed-effects modeling of time to positivity in tuberculosis trials. Pharm Stat, 2018,17(5):615-628. doi: 10.1002/pst.1877.
URL pmid: 30027676 |
[28] |
Yasinskaya Y, Sacks L. Models and approaches for anti-TB drug testing. Expert Rev Anti Infect Ther, 2011,9(7):823-831. doi: 10.1586/eri.11.64.
doi: 10.1586/eri.11.64 URL pmid: 21810054 |
[29] |
Tiberi S, du Plessis N, Walzl G, et al. Tuberculosis: progress and advances in development of new drugs, treatment regimens,and host-directed therapies. Lancet Infect Dis, 2018,18(7):e183-e198. doi: 10.1016/S1473-3099(18)30110-5.
doi: 10.1016/S1473-3099(18)30110-5 URL pmid: 29580819 |
[30] |
Milstein M, Lecca L, Peloquin C, et al. Evaluation of high-dose rifampin in patients with new, smear-positive tuberculosis (HIRIF): study protocol for a randomized controlled trial. BMC Infect Dis, 2016,16(1):453. doi: 10.1186/s12879-016-1790-x.
doi: 10.1186/s12879-016-1790-x URL pmid: 27567500 |
[31] | Hu Y, Liu A, Ortega-Muro F, et al. High-dose rifampicin kills persisters, shortens treatment duration, and reduces relapse rate in vitro and in vivo. Front Microbio, 2015,6:641. doi: 10.3389/fmicb.2015.00641. |
[32] |
Rosenthal IM, Tasneen R, Peloquin C, et al. Dose-ranging comparison of rifampin and rifapentine in two pathologically distinct murine models of tuberculosis. Antimicrob Agents Chemother, 2012,56(8):4331-4340. doi: 10.1128/AAC.00912-12.
doi: 10.1128/AAC.00912-12 URL pmid: 22664964 |
[33] |
Nuermberger EL. Preclinical Efficacy Testing of New Drug Candidates. Microbiol Spectr, 2017,5(3):TBTB2-0034-2017. doi: 10.1128/microbiolspec.TBTB2-0034-2017.
URL pmid: 28597810 |
[34] |
Rosenthal IM, Zhang M, Williams KN, et al. Daily dosing of rifapentine cures tuberculosis in three months or less in the murine model. PLoS Med, 2007,4(12):e344. doi: 10.1371/journal.pmed.0040344.
doi: 10.1371/journal.pmed.0040344 URL pmid: 18092886 |
[35] |
Ammerman NC, Swanson RV, Bautista EM, et al. Impact of Clofazimine Dosing on Treatment Shortening of the First-Line Regimen in a Mouse Model of Tuberculosis. Antimicrob Agents Chemother, 2018,62(7):e00636-18. doi: 10.1128/AAC.00636-18.
doi: 10.1128/AAC.00636-18 URL pmid: 29735562 |
[36] |
Tyagi S, Ammerman NC, Li SY, et al. Clofazimine shortens the duration of the first-line treatment regimen for experimental chemotherapy of tuberculosis. Proc Natl Acad Sci U S A, 2015,112(3):869-874. doi: 10.1073/pnas.1416951112.
doi: 10.1073/pnas.1416951112 URL pmid: 25561537 |
[37] |
Boeree MJ, Heinrich N, Aarnoutse R, et al. High-dose rifampicin, moxifloxacin, and SQ109 for treating tuberculosis: a multi-arm, multi-stage randomised controlled trial. Lancet Infect Dis, 2017,17(1):39-49. doi: 10.1016/S1473-3099(16)30274-2.
URL pmid: 28100438 |
[38] |
Aung KJ, Van Deun A, Declercq E, et al. Successful ‘9-month Bangladesh regimen’ for multidrug-resistant tuberculosis among over 500 consecutive patients. Int J Tuberc Lung Dis, 2014,18(10):1180-1187. doi: 10.5588/ijtld.14.0100.
doi: 10.5588/ijtld.14.0100 URL pmid: 25216831 |
[39] |
Nuermberger E, Tyagi S, Tasneen R, et al. Powerful bactericidal and sterilizing activity of a regimen containing PA-824, moxifloxacin, and pyrazinamide in a murine model of tuberculosis. Antimicrob Agents Chemother, 2008,52(4):1522-1524. doi: 10.1128/AAC.00074-08.
doi: 10.1128/AAC.00074-08 URL pmid: 18285479 |
[40] |
Tasneen R, Tyagi S, Williams , et al. Enhanced bactericidal activity of rifampin and/or pyrazinamide when combined with PA-824 in a murine model of tuberculosis. Antimicrob Agents Chemother, 2008,52(10):3664-3668. doi: 10.1128/AAC.00686-08.
doi: 10.1128/AAC.00686-08 URL pmid: 18694943 |
[41] |
Diacon AH, Dawson R, von Groote-Bidlingmaier F, et al. 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: a randomised trial. Lancet, 2012,380(9846):986-993. doi: 10.1016/S0140-6736(12)61080-0.
doi: 10.1016/S0140-6736(12)61080-0 URL pmid: 22828481 |
[42] |
Li SY, Tasneen R, Tyagi S, et al. Bactericidal and Sterilizing Activity of a Novel Regimen with Bedaquiline, Pretomanid, Moxifloxacin, and Pyrazinamide in a Murine Model of Tuberculosis. Antimicrob Agents Chemother, 2017,61(9):e00913-17. doi: 10.1128/AAC.00913-17.
doi: 10.1128/AAC.00913-17 URL pmid: 28630203 |
[43] | Dawson R, Harris K, Conradie K, et al. Efficacy of Bedaquiline, Pretomanid, Moxifloxacin & PZA (BPaMZ) Against DS- & MDR-TB. San Francisco:Conference on Retroviruses and Opportunistic Infections (CROI), 2017.https://www.croiconference.org/abstract/efficacy-bedaquiline-pretomanid-moxifloxacin-pza-bpamz-against-ds-mdr-tb. |
[44] |
Tasneen R, Betoudji F, Tyagi S, et al. Contribution of Oxazolidinones to the Efficacy of Novel Regimens Containing Beda-quiline and Pretomanid in a Mouse Model of Tuberculosis. Antimicrob Agents Chemother, 2016,60(1):270-277. doi: 10.1128/AAC.01691-15.
doi: 10.1128/AAC.01691-15 URL pmid: 26503656 |
[45] |
Bolhuis MS, van der Werf TS, Akkerman OW. Treatment of Highly Drug-Resistant Pulmonary Tuberculosis. N Engl J Med, 2020,382(24):2376-2377. doi: 10.1056/NEJMc2009939.
doi: 10.1056/NEJMc2009939 URL pmid: 32521141 |
[46] |
Khan U, Huerga H, Khan AJ, et al. The end TB observational study protocol: treatment of MDR-TB with bedaquiline or delamanid containing regimens. BMC Infect Dis, 2019,19(1):733. doi: 10.1186/s12879-019-4378-4.
doi: 10.1186/s12879-019-4378-4 URL pmid: 31429722 |
[1] | Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Inspire-CODA Research Group. Expert consensus on the treatment of tuberculosis with contezolid [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 123-129. |
[2] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[3] | Li Xuelian, Zhang Hongyan, Wang Jun, Wang Qingfeng, Ma Liping, Chu Naihui, Nie Wenjuan. Safety of extended delamanid use in drug-resistant tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 164-168. |
[4] | Shi Lulu, Jing Hui, Liang Min, Li Xuezheng. Analysis of clinical results of blood concentration detection of antituberculosis drugs by liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 886-891. |
[5] | Xue Lian, Ju Meng, Huang Yi, Zhao Guolian, Zhang Yuhao, Wang Sihan, Lei Ying, Dang Liyun, Zuo Lei. A preliminary study of the in vitro bactericidal effect of low-temperature plasma technology on the Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(5): 557-561. |
[6] | Duan Shujuan, Wang Wei, Pang Yu, Li Ling. Research progress on the regulation of host anti-tuberculosis effect by tyrosine kinase inhibitors [J]. Chinese Journal of Antituberculosis, 2024, 46(5): 584-589. |
[7] | Cheng Mengli, Jiang Guanglu, Huo Fengmin, Xue Yi, Yu Xia. Evaluation of in vitro activity of fusidic acid against mycobacteria [J]. Chinese Journal of Antituberculosis, 2024, 46(4): 461-466. |
[8] | Ma Shiran, Chen Suting, Huang Hairong, Duan Hongfei. In vitro inhibitory and intracellular bactericidal activity of omadacycline against Mycobacterium abscessus [J]. Chinese Journal of Antituberculosis, 2024, 46(12): 1442-1447. |
[9] | Jiayinati Jingesi, Wang Xinqi, Liu Nianqiang, Wang Senlu, Yipaer Aihaiti, Feng Jianyu, Huang Tao, Kedieryekezi Wufuer. Analysis of treatment completeness and its influencing factors of preventive treatment among 387 latent tuberculosis infection cases [J]. Chinese Journal of Antituberculosis, 2024, 46(12): 1496-1503. |
[10] | Shi Chunjing, Liu Xing, Li Longfen, Li Wenming, Zhang Huajie, Wang Ge, Zeng Haiyan, Liu Li, Shen Lingjun. Research progress on the effects of bedaquiline,delamanid and pretomanid on liver function in the treatment of multidrug-resistant tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(12): 1560-1565. |
[11] | Sha Wei. Significance and challenges of the implementation of PAN-TB treatment strategy for tuberculosis prevention and control [J]. Chinese Journal of Antituberculosis, 2024, 46(10): 1188-1192. |
[12] | Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis, Beijing Chest Hospital, Capital Medical University. Expert consensus on clinical monitoring and management of QTc interval prolongation caused by anti-tuberculous drugs [J]. Chinese Journal of Antituberculosis, 2024, 46(1): 8-17. |
[13] | Wang Honghong, Guo Shaochen, Zhou Wenqiang, Liu Zhongquan, Zhu Hui, Lu Yu. Influence of linezolid blood concentration on hematological toxicity in drug-resistant tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2023, 45(2): 165-171. |
[14] | Chen Fang, Zhang Xiaofo, Zhou Haiyi, Zhang Feng, Wang Manzhi. Analysis of status and influencing factors associated with anti-tuberculosis drug-related liver injury in children [J]. Chinese Journal of Antituberculosis, 2023, 45(1): 45-51. |
[15] | LIU Hai-ting, LI Dong-shuo, ZHANG Lei, WANG Ning, WANG Bin, DING Yang-ming, YAO Rong, LU Yu. A preliminary study on the synergy and mechanism of pyrifazimine and bedaquiline [J]. Chinese Journal of Antituberculosis, 2022, 44(7): 646-653. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||