Chinese Journal of Antituberculosis ›› 2020, Vol. 42 ›› Issue (7): 737-740.doi: 10.3969/j.issn.1000-6621.2020.07.017
• Review Articles • Previous Articles Next Articles
ZHANG Jie*, REN Yi-xuan, PAN Li-ping, ZHANG Zong-de()
Received:
2020-03-10
Online:
2020-07-10
Published:
2020-07-09
Contact:
ZHANG Zong-de
E-mail:zzd417@163.com
ZHANG Jie, REN Yi-xuan, PAN Li-ping, ZHANG Zong-de. Application of whole genome sequencing in research of Mycobacterium tuberculosis[J]. Chinese Journal of Antituberculosis, 2020, 42(7): 737-740. doi: 10.3969/j.issn.1000-6621.2020.07.017
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2020.07.017
[1] | Goosby E, Jamison D, Swaminathan S, et al. The Lancet Commission on tuberculosis: building a tuberculosis-free world. Lancet, 2018,391(10126):1132-1133. doi: 10.1016/S0140-6736(18)30666-4. |
[2] | Lalor MK, Anderson LF, Hamblion EL, et al. Recent household transmission of tuberculosis in England, 2010—2012: retrospective national cohort study combining epidemiological and molecular strain typing data. BMC Med, 2017,15(1):105. doi: 10.1186/s12916-017-0864-y. |
[3] | Zakham F, Laurent S, Esteves Carreira AL, et al. Whole-genome sequencing for rapid, reliable and routine investigation of Mycobacterium tuberculosis transmission in local communities. New Microbes New Infect, 2019,31:100582. doi: 10.1016/j.nmni.2019.100582. |
[4] | Stucki D, Ballif M, Egger M, et al. Standard genotyping overestimates transmission of Mycobacterium tuberculosis among immigrants in a low-incidence country. J Clin Microbiol, 2016,54(7):1862-1870. doi: 10.1128/JCM.00126-16. |
[5] | Dippenaar A, De Vos M, Marx FM, et al. Whole genome sequencing provides additional insights into recurrent tuberculosis classified as endogenous reactivation by IS6110 DNA fingerprinting. Infect Genet Evol, 2019,75:103948. doi: 10.1016/j.meegid.2019.103948. |
[6] | Pepperell CS, Granka JM, Alexander DC, et al. Dispersal of Mycobacterium tuberculosis via the Canadian fur trade. Proc Natl Acad Sci USA, 2011,108(16):6526-6531. doi: 10.1073/pnas.1016708108. |
[7] | O’Neill MB, Shockey A, Zarley A, et al. Lineage specific histories of Mycobacterium tuberculosis dispersal in Africa and Eurasia. Mol Ecol, 2019,28(13):3241-3256. doi: 10.1111/mec.15120. |
[8] | Luo T, Comas I, Luo D, et al. Southern East Asian origin and coexpansion of Mycobacterium tuberculosis Beijing family with Han Chinese. Proc Natl Acad Sci USA, 2015,112(26):8136-8141. doi: 10.1073/pnas.1424063112. |
[9] | Bjorn-Mortensen K, Soborg B, Koch A, et al. Tracing Mycobacterium tuberculosis transmission by whole genome sequencing in a high incidence setting: a retrospective population-based study in East Greenland. Sci Rep, 2016,6:33180. doi: 10.1038/srep33180. |
[10] | Lee RS, Radomski N, Proulx JF, et al. Population genomics of Mycobacterium tuberculosis in the Inuit. Proc Natl Acad Sci USA, 2015,112(44):13609-13614. doi: 10.1073/pnas.1507071112. |
[11] | Holt KE, McAdam P, Thai PVK, et al. Frequent transmission of the Mycobacterium tuberculosis Beijing lineage and positive selection for the EsxW Beijing variant in Vietnam. Nat Genet, 2018,50(6):849-856. doi: 10.1038/s41588-018-0117-9. |
[12] | Liu Q, Ma A, Wei L, et al. China’s tuberculosis epidemic stems from historical expansion of four strains of Mycobacterium tuberculosis. Nat Ecol Evol, 2018,2(12):1982-1992. doi: 10.1038/s41559-018-0680-6. |
[13] | 高谦, 杨崇广. 我国结核病近期传播与控制策略. 结核病与肺部健康杂志, 2017,6(3):193-198. doi: 10.3969/j.issn.2095-3755.2017.03.001 |
[14] | World Health Organization. Recommendations for investigating contacts of persons with infectious tuberculosis in low- and middle-income countries. Geneva: World Health Organization, 2012. |
[15] | van der Werf MJ, Ködmön C. Whole-Genome sequencing as tool for investigating international tuberculosis outbreaks: a systematic review. Front Public Health, 2019,7:87. doi: 10.3389/fpubh.2019.00087. |
[16] | Arnold A, Witney AA, Vergnano S, et al. XDR-TB transmission in London: Case management and contact tracing investigation assisted by early whole genome sequencing. J Infect, 2016,73(3):210— 218. doi: 10.1016/j.jinf.2016.04.037. |
[17] | Walker TM, Merker M, Knoblauch AM, et al. A cluster of multidrug-resistant Mycobacterium tuberculosis among patients arriving in Europe from the Horn of Africa: a molecular epidemiological study. Lancet Infect Dis, 2018,18(4):431-440. doi: 10.1016/S1473-3099(18)30004-5. |
[18] | Yang C, Luo T, Shen X, et al. Transmission of multidrug-resistant Mycobacterium tuberculosis in Shanghai, China: a re-trospective observational study using whole-genome sequencing and epidemiological investigation. Lancet Infect Dis, 2017,17(3):275-284. doi: 10.1016/S1473-3099(16)30418-2. |
[19] | Liu Q, Zuo T, Xu P, et al. Have compensatory mutations facilitated the current epidemic of multidrug-resistant tuberculosis? Emerg Microbes Infect, 2018,7(1):98. doi: 10.1038/s41426-018-0101-6. |
[20] | Coll F, McNerney R, Preston MD, et al. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences Genome Med, 2015,7(1):51. doi: 10.1186/s13073-015-0164-0. |
[21] | Moradigaravand D, Grandjean L, Martinez E, et al. dfrA thyA Double Deletion in para-Aminosalicylic Acid-Resistant Mycobacterium tuberculosis Beijing Strains. Antimicrob Agents Chemother, 2016,60(6):3864-3867. doi: 10.1128/AAC.00253-16. |
[22] | Almeida D, Ioerger T, Tyagi S, et al. Mutations in pepQ Confer Low-Level Resistance to Bedaquiline and Clofazimine in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2016,60(8):4590-4599. doi: 10.1128/AAC.00753-16. |
[23] | Trauner A, Liu Q, Via LE, et al. The within-host population dynamics of Mycobacterium tuberculosis vary with treatment efficacy. Genome Biol, 2017,18(1):71. doi: 10.1186/s13059-017-1196-0. |
[24] | Cohen KA, Manson AL, Desjardins CA, et al. Deciphering drug resistance in Mycobacterium tuberculosis using whole-genome sequencing: progress, promise, and challenges. Genome Med, 2019,11(1):45. doi: 10.1186/s13073-019-0660-8. |
[25] | Iwai H, Kato-Miyazawa M, Kirikae T, et al. CASTB (the comprehensive analysis server for the Mycobacterium tuberculosis complex): A publicly accessible web server for epidemiological analyses, drug-resistance prediction and phylogenetic comparison of clinical isolates. Tuberculosis (Edinb), 2015,95(6):843-844. doi: 10.1016/j.tube.2015.09.002. |
[26] | Schleusener V, Koser CU, Beckert P, et al. Mycobacterium tuberculosis resistance prediction and lineage classification from genome sequencing: comparison of automated analysis tools. Sci Rep, 2017,7:46327. doi: 10.1038/srep46327. |
[27] | van Beek J, Haanpera M, Smit PW, et al. Evaluation of whole genome sequencing and software tools for drug susceptibility testing of Mycobacterium tuberculosis. Clin Microbiol Infect, 2019,25(1):82-86. doi: 10.1016/j.cmi.2018.03.041. |
[28] | Deelder W, Christakoudi S, Phelan J, et al. Machine Learning Predicts Accurately Mycobacterium tuberculosis Drug Resistance From Whole Genome Sequencing Data. Front Genet, 2019,10:922. doi: 10.3389/fgene.2019.00922. |
[29] | 高旭, 李静, 柳清云, 等. 异质性耐药对结核分枝杆菌表型和基因型耐药检测结果的影响. 中华结核和呼吸杂志, 2014,37(4):260-265. doi: 10.3760/cma.j.issn.1001-0939.2014.04.007 |
[30] | Navarro Y, Perez-Lago L, Herranz M, et al. In-Depth Chara-cterization and Functional Analysis of Clonal Variants in a Mycobacterium tuberculosis Strain Prone to Microevolution. Front Microbiol, 2017,8:694. doi: 10.3389/fmicb.2017.00694. |
[31] | Ley SD, de Vos M, Van Rie A, et al. Deciphering Within-Host Microevolution of Mycobacterium tuberculosis through Whole-Genome Sequencing: the Phenotypic Impact and Way Forward. Microbiol Mol Biol Rev, 2019,83(2):e00062-18. doi: 10.1128/MMBR.00062-18. |
[32] | Bespyatykh J, Shitikov E, Bespiatykh D, et al. Metabolic Changes of Mycobacterium tuberculosis during the Anti-Tuberculosis Therapy. Pathogens, 2020,9(2):E131. doi: 10.3390/pathogens9020131. |
[33] | Auld SC, Shah NS, Mathema B, et al. Extensively drug-resistant tuberculosis in South Africa: genomic evidence supporting transmission in communities. Eur Respir J, 2018,52(4):1800246. doi: 10.1183/13993003.00246-2018. |
[34] | Tagliani E, Cirillo DM, Ködmön C, et al. EUSeqMyTB to set standards and build capacity for whole genome sequencing for tuberculosis in the EU. Lancet Infect Dis, 2018,18(4):377. doi: 10.1016/S1473-3099(18)30132-4. |
[35] | Meehan CJ, Goig GA, Kohl TA, et al. Whole genome sequencing of Mycobacterium tuberculosis: current standards and open issues. Nat Rev Microbiol, 2019,17(9):533-545. doi: 10.1038/s41579-019-0214-5. |
[36] | Crisan A, McKee G, Munzner T, et al. Evidence-based design and evaluation of a whole genome sequencing clinical report for the reference microbiology laboratory. PeerJ, 2018,6:e4218. doi: 10.7717/peerj.4218. |
[37] | Tornheim JA, Starks AM, Rodwell TC, et al. Building the framework for standardized clinical laboratory reporting of next generation sequencing data for resistance-associated mutations in Mycobacterium tuberculosis complex. Clin Infect Dis, 2019,69(9):1631-1633. doi: 10.1093/cid/ciz219. |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[4] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[5] | Zhang Peize, Gao Qian, Deng Guofang. [18F]FDT-PET-CT technology that may bring revolutionary changes to tuberculosis clinical research [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 262-265. |
[6] | Jia Hui, Jing Hui, Ling Xiaojie, Wang Yan, Li Xuezheng. The diagnostic value of GeneXpert MTB/RIF Ultra in detecting sputum samples for newly diagnosed pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 298-304. |
[7] | Shi Yuru, Gu Dejian, Wu Jing, Liu Ting, Qin Linghan, Yue Li, Qi Yingjie. Diagnostic value of probe capture-based targeted next-generation sequencing and metagenomic next-generation sequencing for detecting Mycobacterium tuberculosis in bronchoalveolar lavage fluid [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 305-311. |
[8] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[9] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[10] | Yan Guangxuan, Wang Xueyu, Wang Yujin, Lan Tinglong, Nie Wenjuan. Diagnostic value of using metagenomic second-generation sequencing on suspected osteoarticular tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 175-180. |
[11] | You Chengdong, Zhu Ling, Li Peibo. Research progress on serum trace elements in the development and nutritional support of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 218-223. |
[12] | Fu Ying, Xiong Yangyang, Fang Si, Li Chuanxiang, Guo Hongrong. The research progress on the relationship between serum albumin and its derivative biomarkers and chronic obstructive pulmonary disease [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 231-236. |
[13] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[14] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[15] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||