Chinese Journal of Antituberculosis ›› 2020, Vol. 42 ›› Issue (11): 1237-1242.doi: 10.3969/j.issn.1000-6621.2020.11.017
• Review Articles • Previous Articles Next Articles
LIU Yuan-yuan, CHU Ping, HAN Shu-jing, YANG Hui, LU Jie()
Received:
2020-06-15
Online:
2020-11-10
Published:
2020-11-13
Contact:
LU Jie
E-mail:lujiebch@163.com
LIU Yuan-yuan, CHU Ping, HAN Shu-jing, YANG Hui, LU Jie. Research progress for delamanid resistance mechanism of Mycobacterium tuberculosis[J]. Chinese Journal of Antituberculosis, 2020, 42(11): 1237-1242. doi: 10.3969/j.issn.1000-6621.2020.11.017
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2020.11.017
突变类型 | 突变位点 | MIC值 (mg/L) | 菌株(株) | 文献来源 | |
---|---|---|---|---|---|
耐药 | 敏感 | ||||
非同义突变 | Trp88STOP** | >16 | 3 | 0 | Schena等[ |
>4 | 2 | 0 | Rancoita等[ | ||
Gly81Asp | >1.6 | 2 | 0 | Yang等[ | |
Gly81Ser | >0.4 | 31 | 0 | Yang等[ | |
Gly81Ser | <0.0125 | 0 | 4 | Yang等[ | |
Gly53Asp | 0.25 | 3 | 0 | Polsfuss等[ | |
Leu107Pro | 1 | 1 | 0 | Fujiwara等[ | |
Asn91Thr | >25 | 2 | 0 | Fujiwara等[ | |
Arg72Trp | <0.2 | 0 | 2 | Schena等[ | |
Glu83Asp | <0.2 | 0 | 1 | Schena等[ | |
移码突变 | 434C缺失 | >25 | 1 | 0 | Fujiwara等[ |
215G缺失 | >25 | 1 | 0 | Fujiwara等[ | |
252G—254A缺失 | >25 | 1 | 0 | Fujiwara等[ | |
59—101缺失 | >8 | 1 | 0 | Fujiwara等[ | |
91G缺失 | ≥0.12 | 1 | 0 | Kardan-Yamchi等[ | |
329C插入 | >25 | 1 | 0 | Fujiwara等[ | |
同义突变 | Gly39Gly | <0.0125 | 0 | 5 | Yang等[ |
突变类型 | 突变位点 | MIC值 (mg/L) | 菌株(株) | 文献来源 | |
---|---|---|---|---|---|
耐药 | 敏感 | ||||
非同义突变 | Gly104Ser | >1 | 1 | 0 | Ghodousi等[ |
Ala89Pro | >25 | 1 | 0 | Fujiwara等[ | |
Lys296Glu | <0.2 | 0 | 1 | Schena等[ | |
Lys270Met | <0.2 | 0 | 12 | Schena等[ | |
移码突变 | 227C缺失 | >25 | 1 | 0 | Fujiwara等[ |
630G插入 | >25 | 7 | 0 | Fujiwara等[ | |
G49fs* | >0.32 | 1 | 0 | Bloemberg等[ | |
同义突变 | Phe320Phe | >0.2 | 9 | 0 | Fujiwara等[ |
>8 | 1 | 0 | Wen等[ | ||
<0.2 | 0 | 72 | Schena等[ | ||
Tyr155Tyr | <0.2 | 0 | 3 | Schena等[ |
突变类型 | 突变位点 | MIC值 (mg/L) | 菌株(株) | 文献来源 | |
---|---|---|---|---|---|
耐药 | 敏感 | ||||
非同义突变 | Lys250STOP** | >16 | 1 | 0 | Schena等[ |
Asp106Gly | >25 | 1 | 0 | Fujiwara等[ | |
Asp49Thr | >0.32 | 3 | 0 | Bloemberg等[ | |
Asp49Tyr | ≥2 | 1 | 0 | Hoffmann等[ | |
Glu249Lys | >16 | 1 | 0 | Wen等[ | |
Arg175His | ≥2 | 1 | 0 | Hoffmann等[ | |
<0.016 | 0 | 9 | Bloemberg等[ | ||
Gln120Arg | <0.2 | 0 | 3 | Schena等[ | |
Thr302Met | <0.2 | 0 | 2 | Schena等[ | |
Ala37Asp | <0.0125 | 0 | 1 | Yang 等[ | |
His295Tyr | <0.0125 | 0 | 1 | Yang等[ | |
Ile220Ser | <0.0125 | 0 | 1 | Yang等[ | |
移码突变 | 272—275CAGG插入 | >25 | 1 | 0 | Fujiwara等[ |
452A缺失 | >25 | 1 | 0 | Fujiwara等[ | |
222C, 223C缺失 | >25 | 1 | 0 | Fujiwara等[ | |
同义突变 | Glu249Glu | <0.2 | 0 | 1 | Schena等[ |
Pro144Pro | <0.2 | 0 | 3 | Schena等[ | |
Leu113Leu | <0.2 | 0 | 5 | Schena等[ | |
Asp63Asp | <0.0125 | 0 | 1 | Yang等[ | |
Pro181Pro | 0.2 | 0 | 1 | Yang等[ | |
Ser194Ser | <0.0125 | 0 | 1 | Yang等[ | |
Ser267Ser | <0.0125 | 0 | 1 | Yang等[ |
突变类型 | 突变位点 | MIC值 (mg/L) | 菌株(株) | 文献来源 | |
---|---|---|---|---|---|
耐药 | 敏感 | ||||
缺失突变 | 1339G缺失 | >25 | 1 | 0 | Fujiwara等[ |
811G,813C缺失 | >25 | 1 | 0 | Fujiwara等[ | |
699C缺失 | >25 | 1 | 0 | Fujiwara等[ | |
1638T缺失 | >25 | 1 | 0 | Fujiwara等[ | |
非同义突变 | Arg220STOP** | >25 | 1 | 0 | Fujiwara等[ |
Val318Ile | 32 | 2 | 0 | Pang等[ | |
Cys98Tyr | >25 | 1 | 0 | Fujiwara等[ | |
Leu53Pro | >25 | 1 | 0 | Fujiwara等[ | |
Arg536Leu | 0.25 | 2 | 0 | Rancoita等[ | |
Thr273Ala | <0.2 | 0 | 5 | Schena等[ | |
Thr681Ile | <0.2 | 0 | 1 | Schena等[ | |
同义突变 | Leu55Leu | <0.2 | 0 | 2 | Schena等[ |
Leu182Leu | <0.2 | 0 | 2 | Schena等[ | |
Asp67Asp | <0.2 | 0 | 1 | Schena等[ | |
Leu811Leu | <0.2 | 0 | 1 | Schena等[ |
[1] | World Health Organization. Global tuberculosis report 2019. Geneva:World Health Organization, 2019. |
[2] |
Matteelli A, Roggi A, Carvalho AC. Extensively drug-resistant tuberculosis: epidemiology and management. Clin Epidemiol, 2014,6:111-118. doi: 10.2147/CLEP.S35839.
doi: 10.2147/CLEP.S35839 URL pmid: 24729727 |
[3] |
Orenstein EW, Basu S, Shah NS, et al. Treatment outcomes among patients with multidrug-resistant tuberculosis: systematic review and meta-analysis. Lancet Infect Dis, 2009,9(3):153-161. doi: 10.1016/S1473-3099(09)70041-6.
doi: 10.1016/S1473-3099(09)70041-6 URL pmid: 19246019 |
[4] |
Johnston JC, Shahidi NC, Sadatsafavi M, et al. Treatment outcomes of multidrug-resistant tuberculosis: a systematic review and meta-analysis. PLoS One, 2009,4(9):e6914. doi: 10.1371/journal.pone.0006914.
doi: 10.1371/journal.pone.0006914 URL pmid: 19742330 |
[5] |
Jacobson KR, Tierney DB, Jeon CY, et al. Treatment outcomes among patients with extensively drug-resistant tuberculosis: systematic review and meta-analysis. Clin Infect Dis, 2010,51(1):6-14. doi: 10.1086/653115.
doi: 10.1086/653115 URL pmid: 20504231 |
[6] | World Health Organization. The Use of Delamanid in the Treatment of Multidrug-Resistant Tuberculosis: Interim Policy Guidance. Geneva:World Health Organization, 2014. |
[7] | Liu Y, Matsumoto M, Ishida H, et al. Delamanid: From discovery to its use for pulmonary multidrug-resistant tuberculosis (MDR-TB). Tuberculosis (Edinb), 2018,111:20-30. doi: 10.1016/j.tube.2018.04.008. |
[8] |
Matsumoto M, Hashizume H, Tomishige T, et al. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promi-sing action against tuberculosis in vitro and in mice. PLoS Med, 2006,3(11):e466. doi: 10.1371/journal.pmed.0030466.
doi: 10.1371/journal.pmed.0030466 URL pmid: 17132069 |
[9] |
Yuan Y, Zhu Y, Crane DD, et al. The effect of oxygenated mycolic acid composition on cell wall function and macrophage growth in Mycobacterium tuberculosis. Mol Microbiol, 1998,29(6):1449-1458. doi: 10.1046/j.1365-2958.1998.01026.x.
doi: 10.1046/j.1365-2958.1998.01026.x URL pmid: 9781881 |
[10] | Van den Bossche A, Varet H, Sury A, et al. Transcriptional profiling of a laboratory and clinical Mycobacterium tuberculosis strain suggests respiratory poisoning upon exposure to delamanid. Tuberculosis (Edinb), 2019,117:18-23. doi: 10.1016/j.tube.2019.05.002. |
[11] |
Barry PJ, O’Connor TM. Novel agents in the management of Mycobacterium tuberculosis disease. Curr Med Chem, 2007,14(18):2000-2008. doi: 10.2174/092986707781368496.
doi: 10.2174/092986707781368496 URL pmid: 17691942 |
[12] |
Blair HA, Scott LJ. Delamanid: a review of its use in patients with multidrug-resistant tuberculosis. Drugs, 2015,75(1):91-100. doi: 10.1007/s40265-014-0331-4.
doi: 10.1007/s40265-014-0331-4 URL pmid: 25404020 |
[13] |
Bloemberg GV, Keller PM, Stucki D, et al. Acquired Resis-tance to Bedaquiline and Delamanid in Therapy for Tuberculosis. N Engl J Med, 2015,373(20):1986-1988. doi: 10.1056/NEJMc1505196.
doi: 10.1056/NEJMc1505196 URL pmid: 26559594 |
[14] |
Hoffmann H, Kohl TA, Hofmann-Thiel S, et al. Delamanid and Bedaquiline Resistance in Mycobacterium tuberculosis Ancestral Beijing Genotype Causing Extensively Drug-Resis-tant Tuberculosis in a Tibetan Refugee. Am J Respir Crit Care Med, 2016,193(3):337-340. doi: 10.1164/rccm.201502-0372LE.
doi: 10.1164/rccm.201502-0372LE URL pmid: 26829425 |
[15] | Fujiwara M, Kawasaki M, Hariguchi N, et al. Mechanisms of resistance to delamanid, a drug for Mycobacterium tuberculosis. Tuberculosis (Edinb), 2018,108:186-194. doi: 10.1016/j.tube.2017.12.006. |
[16] | Kardan-Yamchi J, Kazemian H, Battaglia S, et al. Whole Genome Sequencing Results Associated with Minimum Inhibitory Concentrations of 14 Anti-Tuberculosis Drugs among Rifampicin-Resistant Isolates of Mycobacterium Tuberculosis from Iran. J Clin Med, 2020,9(2):465. doi: 10.3390/jcm9020465. |
[17] |
Wen S, Jing W, Zhang T, et al. Comparison of in vitro activity of the nitroimidazoles delamanid and pretomanid against multidrug-resistant and extensively drug-resistant tuberculosis. Eur J Clin Microbiol Infect Dis, 2019,38(7):1293-1296. doi: 10.1007/s10096-019-03551-w.
URL pmid: 30953211 |
[18] |
Yang JS, Kim KJ, Choi H, et al. Delamanid, Bedaquiline, and Linezolid Minimum Inhibitory Concentration Distributions and Resistance-related Gene Mutations in Multidrug-resistant and Extensively Drug-resistant Tuberculosis in Korea. Ann Lab Med, 2018,38(6):563-568. doi: 10.3343/alm.2018.38.6.563.
doi: 10.3343/alm.2018.38.6.563 URL pmid: 30027700 |
[19] |
Pang Y, Zong Z, Huo F, et al. In Vitro Drug Susceptibility of Bedaquiline, Delamanid, Linezolid, Clofazimine, Moxifloxacin, and Gatifloxacin against Extensively Drug-Resistant Tuberculosis in Beijing, China. Antimicrob Agents Chemother, 2017,61(10):e00900-17. doi: 10.1128/AAC.00900-17.
doi: 10.1128/AAC.00900-17 URL pmid: 28739779 |
[20] |
Schena E, Nedialkova L, Borroni E, et al. Delamanid susceptibility testing of Mycobacterium tuberculosis using the resazurin microtitre assay and the BACTEC TM MGITTM 960 system . J Antimicrob Chemother, 2016,71(6):1532-1539. doi: 10.1093/jac/dkw044.
doi: 10.1093/jac/dkw044 URL pmid: 27076101 |
[21] |
Coll F, Phelan J, Hill-Cawthorne GA, et al. Genome-wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis. Nat Genet, 2018,50(2):307-316. doi: 10.1038/s41588-017-0029-0.
doi: 10.1038/s41588-017-0029-0 URL pmid: 29358649 |
[22] |
Purwantini E, Mukhopadhyay B. Conversion of NO2 to NO by reduced coenzyme F420 protects mycobacteria from nitrosative damage. Proc Natl Acad Sci U S A, 2009,106(15):6333-6338. doi: 10.1073/pnas.0812883106.
doi: 10.1073/pnas.0812883106 URL pmid: 19325122 |
[23] |
Griffin JE, Gawronski JD, Dejesus MA, et al. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog, 2011,7(9):e1002251. doi: 10.1371/journal.ppat.1002251.
doi: 10.1371/journal.ppat.1002251 URL pmid: 21980284 |
[24] |
Rancoita PMV, Cugnata F, Gibertoni Cruz AL, et al. Validating a 14-Drug Microtiter Plate Containing Bedaquiline and Delamanid for Large-Scale Research Susceptibility Testing of Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2018,62(9):e00344-18. doi: 10.1128/AAC.00344-18.
doi: 10.1128/AAC.00344-18 URL pmid: 29941636 |
[25] |
Polsfuss S, Hofmann-Thiel S, Merker M, et al. Emergence of Low-level Delamanid and Bedaquiline Resistance During Extremely Drug-resistant Tuberculosis Treatment. Clin Infect Dis, 2019,69(7):1229-1231. doi: 10.1093/cid/ciz074.
doi: 10.1093/cid/ciz074 URL pmid: 30933266 |
[26] |
Ghodousi A, Rizvi AH, Baloch AQ, et al. Acquisition of Cross-Resistance to Bedaquiline and Clofazimine following Treatment for Tuberculosis in Pakistan. Antimicrob Agents Chemother, 2019,63(9):e00915-19. doi: 10.1128/AAC.00915-19.
doi: 10.1128/AAC.00915-19 URL pmid: 31262765 |
[27] |
Haver HL, Chua A, Ghode P, et al. Mutations in genes for the F420 biosynthetic pathway and a nitroreductase enzyme are the primary resistance determinants in spontaneous in vitro-selected PA-824-resistant mutants of Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2015,59(9):5316-5323. doi: 10.1128/AAC.00308-15.
doi: 10.1128/AAC.00308-15 URL pmid: 26100695 |
[28] |
Mukherjee T, Boshoff H. Nitroimidazoles for the treatment of TB: past, present and future. Future Med Chem, 2011,3(11):1427-1454. doi: 10.4155/fmc.11.90.
doi: 10.4155/fmc.11.90 URL pmid: 21879846 |
[1] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[2] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[3] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[4] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[5] | Zhang Peize, Gao Qian, Deng Guofang. [18F]FDT-PET-CT technology that may bring revolutionary changes to tuberculosis clinical research [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 262-265. |
[6] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[7] | Yang Ziyi, Chen Suting. Research progress on bedaquiline resistance and drug resistance diagnosis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 374-379. |
[8] | Li Qi, Wang Yujin, Wang Xueyu, Chu Naihui, Nie Wenjuan. Study on the metabolic interaction mechanism between the novel compound WX-081 and clarithromycin [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 142-149. |
[9] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[10] | Li Xuelian, Zhang Hongyan, Wang Jun, Wang Qingfeng, Ma Liping, Chu Naihui, Nie Wenjuan. Safety of extended delamanid use in drug-resistant tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 164-168. |
[11] | You Chengdong, Zhu Ling, Li Peibo. Research progress on serum trace elements in the development and nutritional support of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 218-223. |
[12] | Xu Zian, Pu Feifei, Feng Jing, Xia Ping. Research progress of high-throughput sequencing technology in the diagnosis and treatment of osteoarticular tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 224-230. |
[13] | Fu Ying, Xiong Yangyang, Fang Si, Li Chuanxiang, Guo Hongrong. The research progress on the relationship between serum albumin and its derivative biomarkers and chronic obstructive pulmonary disease [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 231-236. |
[14] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[15] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||