Chinese Journal of Antituberculosis ›› 2019, Vol. 41 ›› Issue (6): 700-704.doi: 10.3969/j.issn.1000-6621.2019.06.020
• Review Articles • Previous Articles Next Articles
Received:
2019-02-11
Online:
2019-06-10
Published:
2019-06-04
Contact:
Yu LU
E-mail:luyu4876@hotmail.com
Jiao-jie ZHAO,Yu LU. Research and progress of PK/PD for anti-tuberculosis drugs[J]. Chinese Journal of Antituberculosis, 2019, 41(6): 700-704. doi: 10.3969/j.issn.1000-6621.2019.06.020
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2019.06.020
[1] | World Health Organization . Global tuberculosis report 2018. Geneva:World Health Organization, 2018. |
[2] |
Knazek RA, Gullino PM, Kohler PO , et al. Cell culture on artificial capillaries: an approach to tissue growth in vitro. Science, 1972,178(4056):65-66.
doi: 10.1126/science.178.4056.65 URL |
[3] | Shah PM . An improved method to study antibacterial activity of antibiotics in an vitromodel simulating serum levels. Methods Find Exp Clin Pharmacol, 1980,2(4):171-176. |
[4] |
Cavaleri M, Manolis E . Hollow fiber system model for tuberculosis: The European medicines agency experience. Clin Infect Dis, 2015, 61 Suppl 1: S1-4.
doi: 10.1093/cid/civ484 URL |
[5] | 李媛媛, 陆宇 . 动物模型在抗结核新药药效学评价中的应用. 中国防痨杂志, 2017,39(9):1014-1017. |
[6] |
Timmins GS, Deretic V . Mechanisms of action of isoniazid. Mol Microbiol, 2006,62(5):1220-1227.
doi: 10.1111/mmi.2006.62.issue-5 URL |
[7] | 郎美琦, 蒋利, 黄佳盛 . 抗结核病药物治疗综述. 临床肺科杂志, 2010,15(8):1153-1154. |
[8] |
Gumbo T, Louie A, Liu W , et al. Isoniazid’s bactericidal activity ceases because of the emergence of resistance, not depletion of Mycobacterium tuberculosis in the log phase of growth. J Infect Dis, 2007,195(2):194-201.
doi: 10.1086/521712 URL |
[9] |
Gumbo T . New susceptibility breakpoints for first-line antituberculosis drugs based on antimicrobial pharmacokinetic/pharmacodynamic science and population pharmacokinetic variability. Antimicrob Agents Chemother, 2010,54(4):1484-1491.
doi: 10.1128/AAC.01474-09 URL |
[10] |
Almeida Da Silva PE, Palomino JC . Molecular basis and mecha-nisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J Antimicrob Chemother, 2011,66(7):1417-1430.
doi: 10.1093/jac/dkr173 URL |
[11] |
Gumbo T, Louie A, Deziel MR , et al. Concentration-depen-dent Mycobacterium tuberculosis killing and prevention of resis-tance by rifampin. Antimicrob Agents Chemother, 2007,51(11):3781-3788.
doi: 10.1128/AAC.01533-06 URL |
[12] |
Sirgel FA, Fourie PB, Donald PR , et al. The early bactericidal activities of rifampin and rifapentine in pulmonary tuberculosis. Am J Respir Crit Care Med, 2005,172(1):128-135.
doi: 10.1164/rccm.200411-1557OC URL |
[13] |
Diacon AH, Patientia RF, Venter A , et al. Early bactericidal activity of high-dose rifampin in patients with pulmonary tuberculosis evidenced by positive sputum smears. Antimicrob Agents Chemother, 2007,51(8):2994-2996.
doi: 10.1128/AAC.01474-06 URL |
[14] |
Gumbo T, Dona CS, Meek C , et al. Pharmacokinetics-pharmacodynamics of pyrazinamide in a novel in vitro model of tuberculosis for sterilizing effect: a paradigm for faster assessment of new antituberculosis drugs. Antimicrob Agents Chemother, 2009,53(8):3197-3204.
doi: 10.1128/AAC.01681-08 URL |
[15] | Alsultan A, Savic R, Dooley KE , et al. Population pharmacokinetics of pyrazinamide in patients with tuberculosis. Antimicrob Agents Chemother, 2017, 61(6). pii:e02625-16. |
[16] |
Takayama K, Kilburn JO . Inhibition of synthesis of arabinogalactan by ethambutol in Mycobacterium smegmatis. Antimicrob Agents Chemother, 1989,33(9):1493-1499.
doi: 10.1128/AAC.33.9.1493 URL |
[17] |
Lakshminarayana SB, Huat TB, Ho PC , et al. Comprehensive physicochemical, pharmacokinetic and activity profiling of anti-TB agents. J Antimicrob Chemother, 2015,70(3):857-867.
doi: 10.1093/jac/dku457 URL |
[18] |
Srivastava S, Musuka S, Sherman C , et al. Efflux-pump-derived multiple drug resistance to ethambutol monotherapy in Mycobacterium tuberculosis and the pharmacokinetics and pharmacodynamics of ethambutol. J Infect Dis, 2010,201(8):1225-1231.
doi: 10.1086/651174 URL |
[19] | Van’t Boveneind-Vrubleuskaya N, Seuruk T, van Hateren K , et al. Pharmacokinetics of levofloxacin in multidrug-and extensively drug-resistant tuberculosis patients. Antimicrob Agents Chemother, 2017, 61(8). pii:e00343-17. |
[20] |
Zhou CC, Swaney SM, Shinabarger DL , et al. 1H nuclear magnetic resonance study of oxazolidinone binding to bacterial ribosomes. Antimicrob Agents Chemother, 2002,46(3):625-629.
doi: 10.1128/AAC.46.3.625-629.2002 URL |
[21] |
Leach KL, Swaney SM, Colca JR , et al. The site of action of oxazolidinone antibiotics in living bacteria and in human mitochondria. Mol Cell, 2007,26(3):393-402.
doi: 10.1016/j.molcel.2007.04.005 URL |
[22] |
Tsona A, Metallidis S, Foroglou N , et al. Linezolid penetration into cerebrospinal fluid and brain tissue. J Chemother, 2010,22(1):17-19.
doi: 10.1179/joc.2010.22.1.17 URL |
[23] |
Alsultan A, Peloquin CA . Therapeutic drug monitoring in the treatment of tuberculosis: an update. Drugs, 2014,74(8):839-854.
doi: 10.1007/s40265-014-0222-8 URL |
[24] | Brown AN, Drusano GL, Adams JR , et al. Preclinical evaluations to identify optimal linezolid regimens for tuberculosis therapy. MBio, 2015,6(6):e01741-15. |
[25] |
Bolhuis MS, Akkerman OW, Sturkenboom MGG , et al. Line-zolid-based regimens for multidrug-resistant tuberculosis (TB): A systematic review to establish or revise the current recommended dose for TB treatment. Clin Infect Dis, 2018,67 Suppl 3: S327-335.
doi: 10.1093/cid/ciy625 URL |
[26] |
Andries K, Verhasselt P, Guillemont J , et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science, 2005,307(5707):223-227.
doi: 10.1126/science.1106753 URL |
[27] | 应苗法, 朱剑萍, 马珂 , 等. 新型抗结核药物贝达喹啉的作用及其研究进展. 中国新药与临床杂志, 2014,33(5):325-329. |
[28] |
Matsumoto M, Hashizume H, Tomishige T , et al. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med, 2006,3(11):e466.
doi: 10.1371/journal.pmed.0030466 URL |
[29] |
Gupta R, Wells CD, Hittel N , et al. Delamanid in the treatment of multidrug-resistant tuberculosis. Int J Tuberc Lung Dis, 2016,20(12):33-37.
doi: 10.5588/ijtld.16.0125 URL |
[30] |
Gler MT, Skripconoka V, Sanchez-Garavito E , et al. Delamanid for multidrug-resistant pulmonary tuberculosis. N Engl J Med, 2012,366(23):2151-2160.
doi: 10.1056/NEJMoa1112433 URL |
[1] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[2] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[3] | Liu Juxiu, Zhang Jianhua, Wen Junjun, Jiang Xiaoshuang. Analysis and trend prediction of Mycobacterium tuberculosis drug resistance in Jilin City [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 348-354. |
[4] | Yang Ziyi, Chen Suting. Research progress on bedaquiline resistance and drug resistance diagnosis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 374-379. |
[5] | Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Inspire-CODA Research Group. Expert consensus on the treatment of tuberculosis with contezolid [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 123-129. |
[6] | Wang Xueyu, Wang Yujin, Chu Naihui, Kang Wanli, Nie Wenjuan. A preliminary study on the enhanced in vivo exposure of sudapyridine in Mycobacterium abscessus-infected rats with the co-administration of clofazimine or clarithromycin [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 150-157. |
[7] | Li Xuelian, Zhang Hongyan, Wang Jun, Wang Qingfeng, Ma Liping, Chu Naihui, Nie Wenjuan. Safety of extended delamanid use in drug-resistant tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 164-168. |
[8] | Xu Zian, Pu Feifei, Feng Jing, Xia Ping. Research progress of high-throughput sequencing technology in the diagnosis and treatment of osteoarticular tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 224-230. |
[9] | Shi Yilin, Gu Yan. Meta-analysis of the efficacy, adverse reactions, and fatality rate of glucocorticoid combined with anti-tuberculosis drugs in the treatment of tuberculous serositis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 77-86. |
[10] | Wang Xiaomin, Chen Jinyun, Zeng Yuqin, Ma Quan, Kong Xingxing, Meng Jianzhou, Lu Shuihua. Interpretation of the third edition of WHO consolidated guidelines on tuberculosis: module 3: diagnosis: rapid diagnostics for tuberculosis detection [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1006-1022. |
[11] | Ye Zhiteng, Ren Fei, Wang Hua, Yang Ming, Chen Yu, Chen Xiaohong, Wang Yun, Fan Lin. Treatment outcomes and influencing factors in elderly patients with multidrug/rifampicin-resistant pulmonary tuberculosis: a national multicenter, retrospective cohort study [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1023-1029. |
[12] | Geng Zimei, Wang Chaohong, Long Sibo, Zheng Maike, Shi Yiheng, Sun Yong, Zhao Yan, Wang Guirong. Analysis of bacteriological positivity and rifampicin resistance in patients with severe pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1050-1055. |
[13] | Wang Fei, Hua Duo, Guo Jianjian, Liu Chang, Han Lu, Ren Yi. Characteristic analysis of non-tuberculous mycobacterial pulmonary disease patients in Wuhan area from 2021 to 2023 [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1069-1076. |
[14] | Yang Liangzi, Zhang Peize, Lu Shuihua. Interpretation of World Health Organization’s Co-administration of Treatment for Drug-resistant Tuberculosis and Hepatitis C: 2024 Update [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 874-876. |
[15] | Shi Lulu, Jing Hui, Liang Min, Li Xuezheng. Analysis of clinical results of blood concentration detection of antituberculosis drugs by liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 886-891. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||